Microsoft’

Windows
PowerShell 2.0

P1‘0 rammmg
Second Edition

Microsoft” Windows’
PowerShell 2.0
Programming for
the Absolute Beginner,
Second Edition

Jerry Lee Ford, Jr.

Course Technology PTR
A part of Cengage Learning

»~ ~ COURSE TECHNOLOGY
CENGAGE Learning

COURSE TECHNOLOGY

CENGAGE Learning

Microsoft® Windows® PowerShell 2.0
Programming for the Absolute
Beginner, Second Edition:

Jerry Lee Ford, Jr.

Publisher and General Manager, Course
Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Marketing Manager: Mark Hughes
Acquisitions Editor: Mitzi Koontz
Project Editor: Jenny Davidson
Technical Reviewer: Keith Davenport
Interior Layout Tech: Value Chain
Cover Designer: Mike Tanamachi
Indexer: Kevin Broccoli

Proofreader: Sara Gullion

Printed in the United States of America
1234567111009

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions Further permissions
questions can be emailed to permissionrequest@cengage.com

Microsoft and Windows are registered trademarks of Microsoft Corporation
in the United States and/or other countries.

All other trademarks are the property of their respective owners.
Library of Congress Control Number: 2008941543

ISBN-13: 978-1-59863-899-8
ISBN-10: 1-59863-899-8
elSBN-10: 1-43545-443- X

Course Technology
20 Channel Center
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

To my mother and father for always being there, and to my
wonderful children, Alexander, William, and Molly, and my
beautiful wife, Mary.

ACKNOWLEDGMENTS

he new edition of this book represents the culmination of hard work from

a number of individuals to whom I owe many thanks. For starters, there is

Mitzi Koontz, for helping me get this book started and for her support as
acquisition editor. I also owe a special debt of gratitude to Jenny Davidson, who
served as the book’s project editor and worked hard to help keep me straight and
ensured that everything came together like it was supposed to. Thanks also go out
to Keith Davenport, who served as technical editor for both the first and second
edition of this book. Keith provided invaluable insight, guidance, and advice.
Finally, I'd like to thank everyone else at Course Technology PTR for all their con-
tributions and hard work.

ABOUT THE AUTHOR

erry Lee Ford, Jr. is an author, educator, and an IT professional with over

20 years of experience in information technology, including roles as an

automation analyst, technical manager, technical support analyst, au-
tomation engineer, and security analyst. He is the author of 30 books and co-author
of two additional books. His published works include Perl Programming for the
Absolute Beginner, Ruby Programming for the Absolute Beginner, Microsoft Visual Basic
2005 Express Edition Programming for the Absolute Beginner, Microsoft WSH & VBScript
Programming for the Absolute Beginner, Microsoft VBScript Professional Projects, Microsoft
Windows Shell Scripting and WSH Administrator’s Guide, Microsoft Windows Shell Script
Programming for the Absolute Beginner, and Microsoft Windows XP Professional Adminis-
trator’s Guide. Jerry has a master’s degree in business administration from Virginia
Commonwealth University in Richmond, Virginia, and he has over five years of
experience as an adjunct instructor teaching networking courses in information
technology.

This page intentionally left blank

TABLE OF CONTENTS

Part I

Chapter 1

Chapter 2

WINDOWS POWERSHELL BASICS........ccovmmmmmmiiirnnnnnniinnes I
INTRODUCING WINDOWS POWERSHELL......c.ccevenennennen. 3
Project Preview: The Knock Knock Joke Game............cceeeeueureccurenecuernenencnersesecaenneenens 4
Getting to Know Windows PowerShell.........cccoeirnenieneeseesieseseeeeeseeee e 6
A Little History Lesson........cccccvecunenee. e 7
Integration with .NET............... v 8
PowerShell Versus cmd.execc..... . 9
What’s New in Windows PowerShell 2.07.......c.cccovvrirrnnnenenenecceceeerereseneneeeens 10
Notable Windows PowerShell Changes.........cccoveeeeeeineninineeieeeesecneneseeeeenens 10
New Windows PowerShell FEaturesoccvcerririnnenccnereenenereenecsereeneesseeenes 10
Uninstalling POWeTSHell T.0...cccc.o ittt et seeses 12
Installing and Configuring Windows PowerShell...........ccccovvcernvcennecennencecnnenee 13
Configuring Windows Remote Management........ococoreereureriseneseeesesssnesesesessesesesenns 15
Interacting with the PowerShell Command Prompt.........cccccoeeeeeeneneeenenecrnenencenne 17
Starting a New PowerShell SeSSIONcccvveveeueeririnirenieeeieeeieeseeeeeeseseseseeaenens 17
Executing PowerShell CmdIets..........ccceieureerreneeeeneecenecrenerenreeseeeseesesessesesesseaes 18
Other Types of Commands
A Short POWerShell WOTKOULccccuiieiieirieccccisirieteseceeisese et 20
Windows POWeTShell SCTIPUIING.....ccoveeeeeucucueirerieireieeieieesessesesesese st ese s eseeseeaenens 25
Simplifying PowerShell Script EXeCULiON.ccccceurueeeieirieirieieiceeiereeee e 25
Back to the Knock Knock Joke Game..........cceeeverveueiueeerereremniernieeeeeseeeseseeeeesecsseseaenes 26
Designing the Game..........cccceuue.e.e.

The Final Result..........

INTERACTING WITH THE WINDOWS POWERSHELL

COMMAND LINE AND GRAPHICAL ENVIRONMENT....... 35
Project Preview: The Story of the Three AMigO0S......cocouveeeeueerireririnereeeeeeiseeessseenes 36
Accessing Windows POWeTShell.........cccoiinnnnieieeenieeeececsenteeieeees e 39
Customizing the Windows PowerShell Working Environment..........ccccccevueeneee. 40

Customizing Windows PowerShell ShOrtCuts.......coovreeeenercnennenieieeeecnenenes 40

Configuring the Windows Command CONSOle.........ccceurreruererunirirerineceeeeenenenenns 41

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Chapter 3

Windows Command Console Customization Options
Scripting Console Configurationcccecceeereeerercrccncnnenes
Windows Command Console Editing Features..........ccccoooceunceuncncnnccencncnenee
Windows PowerShell Edit ENhancements............ccccveccierieccneninceeeneceeecceneeseenes
Tab COMPIETION ...ttt
The Get-HiStoTy CIMAIETc.oviiiiicireciciic et eeaenas
Working with Graphical Windows PowerShell...........cccccciriincicinnceeenccenneenes
Executing Windows PowerShell Commands.........c.cceceueeeurercurerceemreeerenceeeseenne
Configuring the OUtPUL Pane ..o
Editing and Executing PowerShell SCIipPLScccvveuereeeerecmneceeneerseeneeeeenseaens
Creating Additional RUNSPACEScc.cueeureeuemreeerecieeererreereeeseseae e sseseseeenees
Accessing the Windows PowerShell Graphical Help Files.........ccccccccceuvevcununnee 60
Navigating Hierarchical Data StOTES........ccooveeeeireicurerencneeecreeereereneeeesessesesesseesenne 62
Back to The Story of the Three AMIZOS.......c.cceeceueurecurrreneerreeereereerees e neeeseeseaesennes 66
Creating @ NEW SCIIPT ...t ssese s esese e s s naeaennes 67
Declaring SCTipt VariabIes ... seeesseessneessesesseesessesees 68
Displaying the INTrodUCtiON.......cccccurivieiricrreeerecrree s seaeseeaens 68
Providing Player INSEIUCTIONSccccuevrierrecrreineereereeeseesesesnsesesesessesesensesessesesenens 69
Prompting the Player for INPUL ... seeseeaens 70

Collecting Additional Inputs..........c.c....... ettt et eae 71

Displaying the Story’s Opening............... ettt ettt 73

Displaying the Rest 0f the StOIYcccververrneerecreeereeeeeieeeeeseeseesesesseaens 74
SUINMIIATY .ttt ettt ettt et e e s et se st e s et sets et et s et esesensentenens 77
OBJECT-BASED SCRIPTING WITH .NET......c...crrnnrn.

Project Preview: The PowerShell Fortune Teller Game.........ccccceeueenireencnesencnnenenes
Additional PowerShell Customization TeChniques........ccocoveeueererirerirueieneneresieeeens
The Microsoft .NET FTaIMEWOTK........cveeeriuereeiiririiecceereeisesetreeeseesese s seseseesenens
Key .NET Framework COMPONEILSc.ccccerereriririrerieirenenereseseseeseseseesecseessessesesenens
The NET Class LIDTaryccccovreeeeieneireeeieeeiee et
The Common Language Runtime
Accessing .NET Framework Resources...
Executing Cmdlets......ccccceeerererurennne
Executing Background Jobs
Creating and Executing Background Jobs.......
Retrieving Information about Background Jobs...
Retrieving Background JOD OULPULcoeeeieucueueererirereeeeeeeeereeeeese e
Waiting for a Background to COmpleteccoeeeeerernereeineseeeeeeesereeeeeeaeaenes
Stopping Background JOb EXECULIONcccovueueurureninecrecreieirereeeecieeseseseseceseeens
Deleting a Background JOD ..ottt seeesenenes
Windows PowerShell PIUIMDING.......ccoooceeeiirrrirrneereeeereeseeeseeseseseeeeeeseeeaenes
WOTKING WIth ALTASES....evrieeieeeeieeeeeeeieie ettt sttt nes
Back to the PowerShell Fortune Teller Game..........ccccceeeeeveeieeeeenenenieeeneeeseneneneeens

Part II

Chapter i

Chapter 5

Contents @

Designing the GAINE ..ottt ettt et seees
Creating a New PowerShell Script
Declaring and Initializing Variablescccovrnnnenenenrenereceeseeeeeeens 112
Displaying the WelCOme SCIeEM........covurieeueueurerireeeieeeieereseseeeseseeseseseeeseseseens 113
Displaying Game INStIUCTIONSc.oueueuiiueerecrricieeceeeeseeesees e eseseseesesenseas 114
Controlling GamePlay ... eaessesesesseseseesssesseas 115
Displaying the ClOSING SCTEEILc.ccccueuiueurecurmrieereceeneeeseseseseseeesessesesenesesens 118
SUITUITIATY .ttt et s e sttt s s et a e s senen 119
LEARNING HOW TO WRITE POWERSHELL SCRIPTS....... 121

WORKING WITH VARIABLES, ARRAYS, AND HASHES. . 123

Project Preview: The Seinfeld Trivia QUIZ.......cceveeureurirrririnenenireneneneneeeseseeesenenens 124
Windows PowerShell Language Features.........ccouoeerrereninereeeueesininceeeeeieeeeseseenes 126
Windows PowerShell Reserved WOTIdSccceveeerecueeemneneceneeneeneeseeseneenenens 126
ESCAPE CRATACLETScuiiereeeeieieeieetet sttt sttt ettt sttt ettt 127
Sring Manipulation ...ttt ettt eaens 129
Storing and Retrieving Data.......ccc ittt seesesesesesesenns 132
VATIADIES ...ttt 133
ATTAYS .ttt e e et 139
ASSOCIATIVE ATTAYS.c...vrvreiriueueuetreristeeseesese st se sttt es et set st e s st easasseesens 143
Back to the Seinfeld Trivia QUIZ.......cccerereeurirereurinercreiriecrreneesetreeseseeseseseeseeseaseeaeees 145
Designing the GAIMEccc.occueveeeicrricetreerreereeee e seese s seaesenaens 145

The Final Result....... ettt ns 156
SUIMIMIATY ettt ettt s et s e semeee 156
IMPLEMENTING CONDITIONAL LOGIC......ccvvevreinnrenrnnne 157
Project Preview: The Guess My Number Game..........ccceeueurererererirenenerenesesesecsenenenens 158
ComMPATING VALUES......ciiieeiecieieeeiree sttt et aes 160
Combining Pipelines and OPETAtOTS.........couueururereururmnccmrmrinereeeeeeseseaesesessesesessesesens 162
Implementing Conditional LOZIC......ccuiiiiiirniciriceeceecceeceee e 162

Comparing Data Using the if Statementccocevceurerencreneeereeeecreeseeene 163

Making Multiple Comparisons Using the switch Statementc.......... 168
Windows POWerShell OPeTators..........c.occcueuecueirecueenieeeeseeeneeseesesseesesssesesseesesenses 170

COMPATISOIN OPETATOTSvuuereeremceeseeeseeseaeaessesesensesessesesessesesseaessesssessesessesssessens 170

LOZICAl OPETALOTS......cueieeceeeecriacieeeeereereeeeesese s naens 171

String COmMPAariSON OPETATOTSc.cvcuueucreemmemereereesesensesessesesemsesessesesenesessescsens 172
Back to the Guess My NUmMbeT GAIME........ccoeeeuruicerreecreiieereeeeneneseeseesesesenseaenes 173

Designing the GAINE ...ttt ettt sttt eseens 173
The FINAl RESULL ...ttt neeaes 181

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Chapter b

Chapter 7

USING LOOPS TO PROCESS DATA......cceievvieerereeee 187
Project Preview: The Rock, Paper, SCiSSOTS Game.........cocoeveueueueueurirenerereceenenesnenennne 188
WOTKING WItR LOOPS ... ittt ettt es et sttt stenen 190
Setting Up dO While LOOPS ...ccveeeiueeririririeeieisiriristseeesisies sttt seeseseens 191
Setting UpP dO UNTIl LOOPS ..covveiueiueiririririieieieieieintseeeese ettt sesesssseseenesenns 192
Creating fOT LOOPS .ottt sttt ettt ettt st 193
Creating fOreach LOOPSoouviviueueuririnirieeeieieisists ettt seseseens 196
USING WHile LOOPS ..evreiiiieiiriririreecieieieisireceeie ettt ettt st senes 200
Altering LOOP EX@CULION....c.c.cuiuiuiieiririietieeeiceeieieieests ettt aenen 201
Using the break COmmMAand.......ccceceeururerireeeeieinirireeneeeetsestseseeesessssssesesessesenns 201
Using the continue COmMMANAcccceeuririneneeirinininisereeeeeeeeseseseeeeseesseseseeenes 202

Back to the Rock, Paper, SCiSSOIS GAIME........c.cveveurueucrrececureceeinencrsesenesseeseasescseeseacens 203
DesigNing the GAINE ...ttt ettt st s e esenas 204

The FINAL RESUIL c...oiuiiiiiriceciriciriectrectteeetseicseecse st sese et seaeseseaeseenesesnencs 213
SUIMNIMIATY ettt ettt et st a et st se s e es 213
ORGANIZING SCRIPTS USING FUNCTIONS.........ccvuurees 215
Project Preview: The PowerShell Hangman Game...........cccceceeerennererieeeecccnencrenennnns 216
Changing Script Design Using Functions and Filters........cccovvervcnnnenencncncneenes 219

Improving SCript OrganiZationc.cocoeeeeueeerereririeerieieeeeeest st eeseseseseesens 219

Creating Reusable COde.......oviiinniriririeieeeere ettt 220
Enhancing Script Organization with FUNCHONS......c.cceeeiueeeeeceeecceceeeeee 220

FUNCHON STIUCTUTE. ...ttt ettt et sese st stesenes 220

ProcesSing ATGUITIEIIESc.cueueueeeirerireeteeeieeeeseststetete e seseesestst sttt seseseeaesesassssesens 222

Processing INCOMING Data ...c.c.cvireeieveucueirinirieceei ettt 227

Returning @ RESULT c.c.couieiieieeiieeteeeceect ettt ettt 228

ReStricting Variable SCOPE ..ottt eee 229
Replacing FUNCTIONS With FIITETS....cccciiririrericcieirireetseccecciesreeeeesereese e esenens 231
Back to the PowerShell Hangman Game..........cccceverieureeenenineneeeereseseseseeeeeseseeees 232

Creating @ NEW SCIIPL .cccoieiririririeieeeeretrertee ettt sttt ettt ee st sne 233

Defining and Initializing Script-Level Variables.........ccccocovveeinnnenencncncnenene 233

Defining Custom FUNCLIONScccouvieiiurieiceiirinereeieie ettt se et aenene 234

Prompting the Player to Start the Game.......cococoeeeeenenennenneeeeeecreeeeeeeaee 236

Setting Up a Loop to Control Gameplay........c.ceeeveeeeueereeererereneueesereneseseseeneseenens 237

Selecting a SeCTet WOTd......c.oueueueuiiiriirieieieieeeeet sttt 237

Setting Up a Loop t0 Process USer GUESSES........ccccveerererereeueueeeererenesesseaeaenenenes 238

Collecting and Validating User INPUL.....c.covvevenereeenirninereeeieeeereseceeeieenenene 238

Displaying the Results of EACh GUESScccccveeiririrereeeeenirieeeeeeeseeeeeeeaee 240

Determining When the Game IS OVETcccovvirreieeenenenennireeieeeeese e 241

Challenging the Player to Play Another Game........ccoceeeveveneeucenenennencncnencnenns 242

Part III

Chapter &

Chapter 9

Contents @

ADVANCED TOPICS.....cimuimurmnreereersnrssrsnssnssnssnssnssnssnses 247
WORKING WITH FILES AND FOLDERS........c.cvvvevenenees 249
Project Preview: The PowerShell Tic-Tac-Toe Game........cocoeueeeererenereseeneereneneneenens 250
Using the Power of Regular EXPIeSSiOnS.......ccccccceirrirueerenirenieeenentsee e seseseseeseenenenes 252
Matching Simple PatterniS.... ..o coirrrnieeeeeecrtetse ettt ees 252
Matching Alternative PAtteITScccooveueueeererenirinieereeeeeieseeest et sseeeene 253
Working with Regular Expression Charactersc..cceereeeecencreeeneseennnes 254
Working with Quantifiers
Matching Patterns Based 0n Rangesc.cccoeceeururiririnenenereinenineneeeeeeeseseseeenes 255
Administering Files and FOLAETS........coccruerieeinicrnenierniereeeseeeeeseeeseesesessesesesseaces 257
Verifying File and Folder EXiSTONCE........coccuvueurrreueurecrrececneereeeesseaeneeeaeseeaenens 257
Retrieving File and Folder INfOrmationccccereeerevercueeeenenenenceeneeeeeeseseceneans 258
Copying and Moving Files and FOIAeTrS........cccovueeurrurrinercceieenrereeeeeeiseneeene 259

Deleting Files and FOLAETS........c.ovrereeueuruririniiceieiseesieeeseseeseseseeesese e 260
Renaming Files and FOLAETS........coerirrueuieieeiinienieeeee ettt es 261
SEATCIING FILES ...ttt ettt ettt 261
Reading from and WTiting t0 FileS......coeiiirnniiiiennreeeeteeeete et 262
Creating Files and FOLA@TS.......ovuiueuiieririnininirieieiceccestee ettt ees 262
WIItING t0 TOXE FILES ettt ettt 263
Reformatting Cmdlet OULPULc.cccceeereeereceinieirecreeescireeseteseesecsseeseeseaesseaeaene 264
Reading from TeXt FIIES ..o seessecse e ssesesesesesnens 269
Erasing File COMTEILScccvvcurereerrincreerierreereeeeensesessnsesesesesesessssesssesessesesessescssens 269
Saving Data Output as HTMLccoouiinecrecrecieeeretreeeseeseeesenesessesesseseaene 270

Saving Data as an XML FIle ...t 271
Reading Data from an XML File......ccorniennininneeeeresireeeeseeseeeseseeenenenns 272
Saving Data in a Comma-Separated Value Filecccccovvnrnneecvcncccncnnennns 272
Reading Data from a Comma-Separated Value File........cccocoveuiieniccncncnenenne. 274
Sending OUtput tO the Printer... ..ottt 275
Displaying Data in a Graphic Window Using the Out-GridView Cmdlet........... 276
DiSPlaying OULPUL...ccoieieieirieieieeeiieteteie ettt sttt se sttt s e e et ss s s senens 277
SOTTINE DALA .ottt ettt sttt ettt en 279
GTOUPING DALttt sttt sttt et 279
Searching and Filtering Datacocoeeeeieienininininieeeeeeesereet et es 280
Back to the PowerShell Tic-Tac-Toe GaIMe.......ccoveeerereunurerinirecceerenenerneseeeseeseeaeaens 282
Designing the GAMEoceuieeieiriirieieee ettt sttt ees 282
The FINAl RESULLeoiieeceiiiiiceciceerreteesce ettt e eees 296
SUIMIIMIATY ettt ettt sttt et b et b e 296
BASIC SYSTEM ADMINISTRATION.....cccrmvrmnrmnrrnnrenrnnnens 297
Project Preview: The PowerShell Blackjack Game..........cccccevevuruecnenineecncncneneenenennes 298
Accessing and Administering System ReSOUTrCes..........ccoeevevrueeenenereecerenineesennnnes 300

Listing and StOPPING PTrOCESSES......ccvurueeeueureriiirtrtreeeeeieeeestststeteeeeese e ees 300

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Chapter 10

Administering WindOWS SEIVICESccoevririrecueueirenirireeeeseeeesesesesesesessesessseeaens 301
ACCESSING EVENIT LOZS ...ueviueueucieeeerirereeeceiee ettt eseseeneeas 306
Retrieving System Information Using WMI........c..cccoviiinincnncnnnncnceeneennene 310
Taking Advantage Of .INET CLaSSeSccoeeurmrirmrencurencmeeseeeeeeseeseneseeeeseeesseenes 315
Taking Advantage of COM ODJECLScccruveurmricurecurenceceseeseeeseesesesseeseesesesseenes 315
Programmatically Interacting with the Windows RegiStrycccccceecoeuvencccenne 316

REIMIOTITIG .ttt 320
Creating Your Own ScTipt CINALETS......c.occcuiuieurieeeireeeeecieeceee e seeeseeens 322
Creating a CusStom CIMAIETc.ccuieieiieceeeeieceeeceereeteeeseer e 323
Loading and Executing CmAIetsc.cccveeurmveeeereeenmcemreeeeeereneneeeeseeesenseseneens 324

Working with Pipeline Data.......cococevcrineeenecieeeerecieeceeeeeseeesesseeseeesesseaens 324
EVEIITIIIG ...ttt ettt sttt 325
Instantiating NeW ODJECLSccceuveveuriricerinerreeieerecreescie s nesenseessesesesseseseens 326
EXamiNing ODJECTScu vt sesese e esese e seesessssesesseaeseesesenns 326
Subscribing to Object EVENLS.......c.ooceiicireneeeeecieeeeeeeeeese e sseseseesesesseaes 327
Waiting for an EVent t0 OCCUT ... neaess e sseseseesenees 328
REMOVING EVEILLS ...ttt sese s ese s sseassens 329
Back to PowerShell Blackjack GaIe.........coeeueureeucurenceruneeeneeeeeeeesenseensesesessesesesseenes 329
Creating @ New SCIIPE FIle ..ot sesese s 330
Defining and Creating New Variablescccovveiveeenirerineneeeeneereseseeeenns 331
Creating the Get-Permission FUNCLION ...c.cevureviineeeinininirieneeceseeseeeeieiane 331
Creating the Check-Registry FUNCHION ...c.coverieueeeeiririnireeeeieieesteseenee s 333
Creating the Play-Game FUNCHIONcccoeiuruririririieeieisieenteeeieeee st 334
Creating the Deal-Hand FUNCLIONcocoeeuiuriririniieiceisriereeeeie st 334
Creating the Get-Card FUNCLIONc.oovivieeeririririntreceeieietseseeee et 335
Creating the Get-ComputerHand FUNCLION.....ccceururirinieeeeererireeeeeeneeene 335
Creating the Analyze-Results FUNCHONocoeeeeeureririninieeeieieieiseeseeie e 336
Creating the Get-PlayerHand FUNCHON ..c.ccvuvirevireceeieieiririeeeeeieeestseseeenenes 337
Creating the Get-NewCard FUNCLION ...cccceeururirininireieenireireeeee et 339
Adding Controlling Logic to the Main Processing Sectionccccceovveene 339
SUIMNIMIATY ..ttt ettt et sttt e sa et se s emeees 340

DEBUGGING POWERSHELL SCRIPTS......cccocuvvmnrennrcnnne. 343

Project Preview: The PowerShell Game Console..........ccccoeercennrecnneneencnreeeenes 344
Understanding POWerShell EITOTS.......cccovuriiinirieereeceee ettt e 345
SYNLAX ETTOTS ..ottt ettt ettt 345
RUNTIINE EITOTS ..iiiiiiiciciciriitccecietstrtc ettt ettt senes 346
Logical Errors..... ettt ettt et bttt et ettt e s e ae et et b eaesesenean 347
Terminating Versus Non-Terminating EITOTS........ccocovrueiienenneenecreeseeeeseeeeene 348

Dissecting the Structure of EITOT MeSSages.......cevurueueuererererererieeeerestseseeseeeseseseeees 348
Telling Windows PowerShell How to React to EITOTS.......ccccoveeieueeienirenieecneeinenene 349
Creating Error HAnAIeTs......cccovueueeiieiieieeeieieeece ettt ettt 351

Creating Trap HAnAIeTsc.cooerureeiirieieieieieee ettt e aes 351

Part IV

Appendix A

Appendix B

Contents

Handling Errors Using Try, Catch, and Finally

Tracing SCIiPt EX@CUTION.cuiirieieiceeeeceicieieieie ettt se et e st
Displaying Output Status Information and Tracking Variable Values....... 359
Using PowerShell’s Debug Mode............c.oocuiierincunecieeneeeecreieeeseesseeseesesenens

Debugging PowerShell 2.0 SCTIPLS......cococuiuirceiierieeieeeeeieeeeseseesee e sencaenenns
Breakpoint CIMAIETScc.cuccuiciriccericreeietreere e s s seas
Controlling Statement Execution....

A Quick Debugging Example.............
Managing Breakpoints..........cccocoeveccureenee

Back to the PowerShell Game CONSOIe..........ccccueureeurmrmecreiriecrenreeeenseese e eeseseesens
Designing the GAINE ...ttt ettt et seseees
The FINAl RESULL ...ttt neeaes

SUITIITIATY .ttt ettt sttt s st e s senen

APPENDICES....cccuiiaimuimninnsnnssassmssnssnnssassmssassnssnnssnssnns 375

WHAT’S ON THE COMPANION WEBSITE?...........cceeeeeee 377

WHAT NEXT?..ociiiciriirrerrcsresrres s ses s smn s emn s s snnnsnnnss 379

WiIndows POWerShell IDES..........cc.coiiniciriieicieceeeseesesese s ssesesesesssscsesseaesees 380

Recommended REAING......cccccueueuiuiururuririririrererireeeees ettt st sens 381

Locating Microsoft PowerShell Resources Online...........ccccocoeeunenivccerencncnnececccnenne 382
Wikipedia’s Windows PowerShell Page ... 383
Windows PowerShell NEWS GTOUDcccvucumeurericurenereeneneneeesesesesseesesseseseesesens 385
POWETSRNELIL BIOZS.......couiimiiciiciciictreeeeree e 385

GLOSSARY...cuiicuiiieieenrensrressrmssrnnssnnssnnssrmsssnnssnnssnnssnnns 389

INTRODUCTION

elcome to the second edition of Microsoft Windows PowerShell 2.0 Program-

ming for the Absolute Beginner. Windows PowerShell is a next-generation

command shell for Microsoft operating systems. A command shell or shell is
a text-based interface that sits between the user and the operating system, which
most people loosely refer to as the command prompt. In the case of the Windows
PowerShell, the shell is both a user interface and a scripting language, both of
which have been designed from the ground up to facilitate the secure adminis-
tration of Windows operating systems.

The first edition of this book addressed Windows PowerShell 1.0, which was re-
leased by Microsoft in November 2006. Although Windows PowerShell 2.0 adds a
lot of new features and capabilities, it is still 100 percent backward compatible
with PowerShell 1.0. As such, even though this book has been expanded to address
Windows PowerShell 2.0, it still provides complete coverage of PowerShell 1.0. So,
regardless of which version of PowerShell you are working with, you are going to
be well served by this book.

The goal of this book is to teach everything you need to know to begin developing
your own Windows PowerShell scripts. This will, of course, include learning how
to interact with the Windows PowerShell command line. It will also involve learn-
ing a little about Microsoft’s .NET Framework. At the same time, you learn how to
work with other Windows technologies, such as the Windows registry, as you learn
how to become a PowerShell programmer.

WHyY WINDOWS POWERSHELL SCRIPTING?

Windows PowerShell is a next-generation command shell developed by Microsoft
to run on its latest generation of Windows operating systems. As a shell, you in-
teract with Windows PowerShell from the command line. One of the things that
makes the PowerShell different from cmd.exe, the previous Windows command
shell, is that PowerShell has been redesigned as an object-based environment that
is tightly integrated with Microsoft’s .NET Framework. As such, the PowerShell is
far more powerful and advanced than its predecessor. At the same time, Microsoft
worked hard to make Windows PowerShell backward compatible. The Windows
shell will accept and process the same commands as the previous Windows shell,

Introduction @

thus preserving any knowledge and experience you may already bring with you while also
introducing you to a whole new set of capabilities.

Microsoft provides the Windows PowerShell as a free add-on to Windows operating systems.
Its scripting language has been designed from the ground up to support object-based pro-
gramming, thus providing systems administrators and computer hobbyists with a tool for
automating just about any Windows activity.

Windows PowerShell makes for a great starter language for first-time programmers and hob-
byists. Professional programmers will also benefit from Windows PowerShell’s scripting
technology, which provides more robust and powerful scripting capabilities than that pro-
vided by any other Windows scripting language. You will find that more often than not, you
can develop scripts to automate a given task much more quickly and efficiently using the
Windows PowerShell than can be done using other scripting languages, thus saving valuable
time and freeing you up to move on to tackle other tasks.

In short, whether you are interested in learning your first programming language or are look-
ing for an introduction to PowerShell scripting that teaches you how to develop PowerShell
scripts with which you can leverage your existing knowledge of .NET programming, this book
should serve you well. If Windows is your operating system of choice, Windows PowerShell
scripting provides access to a scripting environment that is unmatched by other scripting
languages. In addition, learning Windows PowerShell scripting will provide you with a pro-
gramming background from which you can then make the jump to other .NET programming
languages.

This book will teach you Windows PowerShell scripting and will demonstrate how to leverage
the scripting capabilities provided by both Windows PowerShell 1.0 and 2.0. To help make
learning fun and interesting, you will learn how to program through the development of
computer games. By the time you have finished this book, not only will you have access to a
collection of working sample scripts, you also will have laid a foundation upon which you
can begin to tackle real-world challenges.

WHo SHouLp Reab THis Book?

My goals in writing this book are to show you how to interact with the Windows PowerShell,
to teach you the fundamentals of how to develop and execute PowerShell scripts, and to help
you become an effective programmer.Ido not make any assumptions regarding your previous
programming experience, although prior programming experience is obviously helpful.Ido,
however, expect you to have a working familiarity with Windows.

I think that you will find this book’s unique approach of teaching through the development
of computer games both entertaining and highly productive. Learning through the creation

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

of computer games not only helps keep things fun but it also provides a unique opportunity
to experiment with a programming language.

If you are a first-time programmer or a computer hobbyist, you should find this book’s sys-
tematic building block approach to programming very helpful, allowing you to master basic
fundamentals before moving on to more advanced topics. By investing your time and energy
in learning how to program using Windows PowerShell scripting, you will develop a pro-
gramming foundation that translates well to other scripting languages such as VBScript,
JavaScript, Python, Ruby, and Perl, as well as .NET programming languages such as C#, C++,
and Visual Basic. Professional programmers will also benefit from this book by using it as a
quick start guide to PowerShell scripting.

WHAT You NEeD 10 BEGIN

In order to work with Windows PowerShell, your computer must run one of the following
operating systems.

¢ Windows XP
¢ Windows Server 2003
e Windows Vista

¢ Window Server 2008

When writing this book, I worked on a computer running Windows Vista. Therefore, all of
the figures and examples that you will see were generated on that particular operating sys-
tem. However, everything you see should apply to Windows XP, Windows Server 2003, and
Windows Server 2008 as well.

The examples shown in this book were developed using Windows PowerShell 2.0 CTP2. CTP2
stands for Community Technology Preview version 2 and is an advanced version of Windows
PowerShell. According to the Windows PowerShell Team blog (http://blogs.msdn.com/
powershell/), PowerShell CTP2 is a feature set complete version of Windows PowerShell. As
such, it should look, act, and behave very much like the general release version of PowerShell
2.0 when it is finally released. Except where specifically noted, most of the examples that you
will see in this book apply to Windows PowerShell 1.0 as well. However, I have to tell you
upfront, that as good as Windows PowerShell 1.0 is, Windows PowerShell 2.0’s new features
really take things to the next level and you should consider starting out with Windows Pow-
erShell 2.0 CTP2, or the General Release Version as soon as it becomes available.

In addition to running a supported operating system, both PowerShell 1.0 and 2.0 require
that your computer must also have Microsoft .NET Framework version 2.0 or higher installed.
Windows PowerShell 2.0 CTP2 includes additional features not found in Windows PowerShell
1.0. These features include support for remote and background jobs. As of the writing of

http://blogs.msdn.com/powershell/
http://blogs.msdn.com/powershell/

Introduction

this book, Windows PowerShell only supported this feature on Windows Vista with Service
Pack 1 and Windows Server 2008. Windows PowerShell 2.0 CTP2 also introduces a new
Out-GridView cmdlet and a graphical Windows PowerShell editor that requires .NET Frame-
work 3.0 in order to run and a new Get_Event cmdlet that requires .NET Framework 3.5. So, if
you want to really take advantage of everything this new version of PowerShell has to offer,
you need to install the latest version of the .NET Framework.

As of the writing of this book, both versions of Windows PowerShell were provided as a
free download by Microsoft and could be downloaded and installed from the Microsoft
PowerShell website located at http://www.microsoft.com/technet/scriptcenter/topics/winpsh/
pshell2.mspx. When downloading the newest version of Windows PowerShell make sure you
download Windows PowerShell CTP2 or a later version of Windows PowerShell and not an
earlier Windows PowerShell CTP version.

If necessary, you can get the latest version of .NET by going to http://msdn.microsoft.com/
netframework/.

To follow along with all of the topics and exercises presented in this book, you will need a
supported version of Windows, .NET 3.0, and a copy of Windows PowerShell 2.0. Alternatively,
ifyouwant to just focus in on PowerShell 1.0, all you need is .NET 2.0 and Windows PowerShell
1.0. Windows PowerShell 2.0 comes equipped with a brand new graphical editor. However, if
you are working with PowerShell 1.0, you will need a text editor with which you will create
and save PowerShell script files. For starters, you can use the Windows Notepad application.
However, you may find it beneficial to download and install a code editor that is specifically
designed to support PowerShell script development. If you skip ahead to Appendix B, “What
Next?,” you will find information about two such applications, both of which were free as of
the time of this writing.

How THis Book Is ORGANIZED

As I sat down to work on the second edition of this book and update its overall design and
structure, I did so with the intention that it be read from cover to cover. However, if you
have prior programming experience, you may instead choose to read this book by going
through the first two chapters in order to learn a few specifics about working with Windows
PowerShell. You might then jump around a bit to different chapters based on your specific
needs and experience. However, Windows PowerShell comes equipped with an entirely new
programming language. As such, it is probably a good idea that you spend some time reading
Chapters 4 through 7, which cover the basics of the Windows PowerShell scripting language.

Also, to help make things as simple as possible, I decided to use the term Windows PowerShell
whenever addressing topics that apply to both Windows PowerShell 1.0 and 2.0 and only

http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pshell2.mspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pshell2.mspx
http://msdn.microsoft.com/netframework/
http://msdn.microsoft.com/netframework/

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

to use the term Windows PowerShell 2.0 when addressing topics specific to that version of
PowerShell.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner is organized into four
parts. Part I is made up of three chapters that focus on providing you with an introduction
to the PowerShell and its capabilities. These chapters outline the basic steps involved in
interacting with the PowerShell command prompt and in creating and executing PowerShell
scripts, and they provide an overview of object-based scripting and the PowerShell’s relation-
ship with the .NET Framework.

Part II consists of four chapters, which together provide you with a review of the PowerShell
scripting language. Each chapter focuses on a different collection of topics. You will learn
how to store and retrieve data. You will also learn how to implement conditional logic and
to set up loops in order to automate repetitive tasks and process large collections of data.
Lastly, you will learn how to improve the overall organization of your PowerShell scripts using
functions.

Part IIl is made up of three chapters, each of which covers an advanced topic. These topics
include learning how to work with files and folders, developing PowerShell scripts to auto-
mate system administration tasks, and learning how to track down and debug errors.

Finally, Part IV consists of two appendices and a glossary. The appendices address the material
that you will find on this book’s companion website as well as provide you with suggestions
on where you can go online to learn more about Windows PowerShell. Lastly, the glossary
provides access to a comprehensive list of terms used throughout the book.

A detailed review of the information provided by each chapter of this book is provided here.

e Chapter 1, “Introducing Windows PowerShell.” This chapter provides an introductory
overview of the Windows PowerShell. You will learn about the different technologies
that make up and support Windows PowerShell, including object-oriented program-
ming and the .NET Framework. You will also learn how to start the PowerShell and to
interact with it using commands and cmdlets. In addition, you will learn how to con-
figure the PowerShell to run scripts and support remote script and command execution
and to develop and execute your first PowerShell script.

e Chapter 2, “Interacting with the Windows PowerShell Command Line. and Graph-
ical Environment” This chapter provides a thorough review of how to interact with the
Windows PowerShell command line and how to work with its built-in cmdlets. You will
also learn to access help information and to formulate command input. You will learn
how to configure the PowerShell Console and to work the Windows PowerShell 2.0’s
graphical development environment.

Introduction @

Chapter 3, “Object-Based Scripting with .NET.” Windows PowerShell requires .NET in
order to execute. This chapter provides an overview of .NET and its relationship to
Windows PowerShell. You will learn about the .NET class library and how to work with
structured objects and to work with background jobs and aliases.

Chapter 4, “Working with Variables, Arrays, and Hashes.” This chapter’s primary
focus is to show you different ways that you can store and retrieve data. This will include
learning how to define and access variables, arrays, and hashes. You will also learn how
to work with PowerShell’s special variables.

Chapter 5, “Implementing Conditional Logic.” In this chapter you will learn how to
apply conditional logic in order to analyze data and selectively choose between different
logical execution paths. You will learn how to evaluate strings, numbers, and Boolean
data.

Chapter 6, “Using Loops to Process Data.” This chapter shows you how to create loops
in order to efficiently execute commands over and over again, thus facilitating the pro-
cessing of large amounts of data. You will also learn how to conditionally break out of
loops when predetermined conditions occur.

Chapter 7, “Organizing Scripts Using Functions.” This chapter introduces you to
functions and explains how to use them to improve the overall organization and read-
ability of your PowerShell script files. This includes learning how to call on functions
for execution as well as how to pass arguments to functions for processing and to set up
functions to return data back to calling statements.

Chapter 8, “Working with Files and Folders.” This chapter will teach you how to in-
teract with and control files, folders, and disks. You will learn how to open and close
files and to read and write information to and from them. You will learn how to work
with regular expressions and to perform all kinds of string management operations. You
will also learn how to use PowerShell 2.0’s new 0Out-GridView cmdlet to display output
in a format that supports both searching and sorting.

Chapter 9, “Basic System Administration.” The primary focus of this chapter is to
demonstrate how to develop PowerShell scripts that automate various system adminis-
tration tasks, such as how to access system information and network resources. You will
learn how to interact with the Windows registry, remotely execute scripts, develop your
own custom cmdlets, and even to automate script execution based on the occurrence of
predefined events.

Chapter 10, “Debugging PowerShell Scripts.” This chapter focuses on teaching you
how to track down and fix any error that may occur as you work on your PowerShell
scripts. The topics covered include how to trap and recover from errors using Try-
Catch-Finally, how to pause script execution by establishing breakpoints, how to

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

control script execution by stepping though code statements, how to monitor variable
values, and how to trace script execution using debug mode.

* Appendix A, “What’s on the Companion Website?” This appendix provides a review
of the materials that can be found on this book’s companion website
(www.courseptr.com/downloads). This material includes copies of all the PowerShell
game scripts covered in this book.

* Appendix B, “What Next?” This appendix is designed to provide suggestions and tips
for furthering your Windows PowerShell scripting education. It includes suggestions
for additional reading and points you to various PowerShell resources available on the
Internet, including PowerShell IDEs, user groups, and blogs.

e Glossary. This unit provides a glossary of terms used throughout the book.

CoNVENTIONS UseD IN THIs Book

In order to help you get the most out of this book and to help organize the material in an
efficient and comprehensive manner, [have implemented a number of conventions that will
help with the overall organization and presentation of this book’s material. These conven-
tions are outlined below.

HINT. Suggestions and ideas for different ways things can be done to help you
become a better and more efficient Windows PowerShell programmer.

TRAP. Situations where mistakes and errors often are made and advice on how
to deal with these situations.

TRICK. Tips, tricks, and programming shortcuts that you can use to work faster
and more efficiently.

IN THE REAL WORLD

IN THE REAL WORLD. Explanations and demonstrations of how certain programming tech-
niques are applied to solve specific real-world problems.

7~
\

www.courseptr.com/downloads

Introduction @

CHALLENGES

CHALLENGES. At the end of each chapter, you will learn how to create a
new computer game. | will then present you with a series of suggestions
to follow up on to further enhance and improve both the chapter game
project and your programming skills.

This page intentionally left blank

Part

Windows PowerShell Basics

This page intentionally left blank

(cHAPTER)

INTRODUCING WINDOWS
POWERSHELL

indows PowerShell is a next-generation command shell that runs on

the x86 and x64 version of Windows XP-SP2, Windows Server 2003-SP2,

Windows Vista-SP1, and Windows 2008. As a command shell, PowerShell
provides a command-line interface that administrators and computer hobbyists
can use to directly interact with and control the Windows operating system.
PowerShell also includes its own scripting language that has been custom
designed to interact with Microsoft’s .NET Framework and to take advantage of
theresources that .NET provides. In this chapter, Iwill introduce you to PowerShell
and PowerShell scripting. By the end of this chapter, you will have created your
first PowerShell script game and have a good understanding of the steps involved
in creating and executing PowerShell scripts.

Specifically, you will learn:

o Alittle bit about PowerShell’s history

e How to install PowerShell and configure it to run scripts
e About new features specific to Windows PowerShell 2.0
e About the basic components that make up PowerShell

e About cmdlets and how to use them to formulate commands and script
statements

¢ How to get help regarding different PowerShell commands

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJect PreviEw: THE KNock KNock JokE GAME

In this chapter and in each chapter that follows, you will learn how to create a computer
game using Windows PowerShell scripting. In this first game, you will create a script that
tells several knock knock jokes. The script is designed to interact with the user by prompting
the user to enter input at appropriate moments.

The game begins by clearing the screen and then displaying a prompt that says Knock Knock!,
as shown in Figure 1.1.

=% Windows PowerShell M [=1E1

FIGURE 1.1

The Knock Knock

Joke game begins

by prompting the

user to guess who
is there.

As a response, the user is expected to enter the string Who is there?, exactly as shown in
Figure 1.2.

5 Windows PowerShell =ET
Knock KEnock?!: WUhoe iz there?_

FIGURE 1.2

The user must
respond by typing
the string Who is

there?.

If the user types anything other than Who is there?, the script will continue to prompt the
user until he responds correctly, as demonstrated in Figure 1.3.

Chapter | ¢ Introducing Windows PowerShell @

£+ Windows PowerShell o [=] 3
nock Eno : 1

[Enock Enock

If necessary, the
game will
continue to
prompttheuserto
respond correctly.

Once the user provides the correct response, the game responds with an answer of “Orange.”
In response, the player is required to enter the string Orange who?, as demonstrated in
Figure 1.4.

£+ Windows PowerShell —|of x|
Drange.: Orange who?_

The playeris
required to
respond Orange
who?.

Next, the script displays the joke’s punch line, as shown in Figure 1.5.

The game displays the punch line for five seconds before clearing the screen and starting the
process of telling another joke. In total, the game tells three jokes, pausing for five seconds
at the end of each joke to display a punch line. Finally, once the last joke has been told, the
information shown in Figure 1.6 is displayed for three seconds, after which the screen is
cleared and the PowerShell command is redisplayed.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

2= Windows PowerShell — o] =|
Orange vou glad you created this PoweriShell script? -

Finally, the joke’s
punch lineis
displayed.

c,‘;- Windows Powershell = |_i|:| x|
(Lhe Knock Knock Joke

Copuright 2888 — Jewrry Lee Ford.

The script ends by
displaying
information about
itself and its
author.

Now that you have had a quick preview of the operation of the Knock Knock Joke game, let’s
spend a little time learning more about PowerShell and PowerShell scripting. After this, we’ll
turn our attention back to the development of the game script at the end of the chapter.

GETTING TO KNOoW WINDOWS POWERSHELL

Most operating systems’ command shells consist of a small number of internal commands,
which the shell runs internally when executed. Because the number of commands provided
by traditional shells is limited, large numbers of utility programs (or external commands) are
later developed to supplement built-in shell commands in order to provide missing func-
tionality. These utility programs run outside of the shell, generating their own processes.
These utility programs may or may not support a command syntax that is similar to that of
its associated command shell. The end result is a command line and shell scripting environ-
ment that is difficult to learn due to syntax inconsistencies.

Chapter | ¢ Introducing Windows PowerShell @

Enter the Windows PowerShell, which provides access to well over one hundred commands
in the form of cmdlets, each of which share a common syntax, making the command line
and scripting environment far more predictable and easy to learn. When developing Windows
PowerShell, one of Microsoft’s goals was to make the learning curve for PowerShell as easy as
possible. Therefore, it incorporated as many cmd.exe and UNIX shell features as it could into
Windows PowerShell.

Windows PowerShell has many other features that further differentiate it from traditional
command shells. These features include:

* A C#-styled syntax
* Access to cmdlets providing access to .NET Framework classes
* Support for regular expressions

* A provider model that provides Windows PowerShell with access to hierarchical repos-
itories including the Windows file system and the Windows registry

* The ability to shorten commands and script statements by supplying abbreviated forms
of keywords

A Little History Lesson

Going all the way back to the first version of Windows, every version of Windows has included
a command shell. The original command-line shell was named Command.com. When Win-
dows NT was released, Microsoft added cmd.exe as the operating system’s new command
shell. cmd.exe remained the Windows command shell when both Windows 2000 and Win-
dows XP were released. As much of an improvement as cmd.exe was over Command.com, it
never provided the kind of comprehensive access to the Windows operating systems that, for
example, UNIX and Linux users and administrators are accustomed to.

Windows has successfully made the leap from the Windows desktop to become a major player
in corporate data centers all around the world. However, its lack of a world-class shell has
plagued Windows administrators. When Microsoft released the Windows Script Host, or WSH,
in 1998, things improved significantly. Using the WSH, Windows administrators could
develop automation scripts using either VBScript or JScript. Later, third-party developers
released WSH-compatible scripting languages that included Perl, Rexx, and Python. Still,
when compared to UNIX, command-line access has continued to remain a major deficiency
for Windows.

By creating Windows PowerShell and providing it with an entirely new scripting language
capable of accessing resources provided by the .NET Framework, Microsoft has provided Win-
dows users and administrators with a command shell that now has access to resources
formerly only available to GUI-based programming languages like Visual Basic .NET.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Integration with .NET

Unlike traditional command shells, which manipulate text, Windows PowerShell treats
everything as objects. An object is a self-contained resource that stores information about itself
in properties and provides program code, in the form of methods, that can be used to interact
with it. For example, a file is an object. So is a disk drive and a folder.

All objects are derived from a class that defines the object and its properties and methods.
An object’s properties describe particular features of the object. For example, a file has a name,
a file extension, and a file size among many other properties. Objects also have built-in col-
lections of code, referred to as methods, which can be programmatically called upon to access
and interact with objects. For example, files can be opened, read from, written to, closed, and
deleted.

The .NET Framework provides the Windows PowerShell with access to a huge library of classes.
The .NET Framework class library is a hierarchical collection of classes that define the data
type of objects that can be instantiated using the classes as templates. Within the framework,
classes are often based on other classes, creating parent and child relationships. A child class
(or subclass) inherits base object definitions from its parent class and includes its own mod-
ifications. These classes and subclasses are made available to the PowerShell in the form of
cmdlets, which are built-in commands that provide access to specific system resources.

ric¥ Classes, objects, properties, and methods can be difficult for new programmers
\ to understand. To help make them easier to understand, consider the following
analogy. A car manufacturer might have a library of blueprints (class library)
which are used in the making of new cars. An individual blueprint (class) defines
everything required to create a new type of car (object).

Individual cars are created or instantiated based on the blueprint. For example,
a car company might have a master set of blueprints for building a particular
model of a car. Using this one blueprint (class) the car company can create (in-
stantiate) as many new cars (objects) as it wishes. By default, each car produced
using the same class has the same set of properties and methods. Each car that
is created from the same blueprint inherits a predefined set of attributes (prop-
erties). For example, every car has a color. By modifying the value of its color
property, each car or object can be given a different color.

If the car company wants, it can pay an engineer to create a new set of blueprints
for anew car, using the other set of blueprints as a starting point. As aresult, the
new set of blueprints would representasubclass of the parent class and any new
cars created from the new set of blueprints, though similar to cars created by
the parent class, would have their own unique subset of shared properties and
methods.

Chapter | ¢ Introducing Windows PowerShell @

A basic understanding of objects is essential for any Windows PowerShell programmer
because the PowerShell interacts with objects in just about everything it does. As such, Win-
dows PowerShell scripting is often referred to as an object-based scripting language. It is called
an object-based scripting language because, unlike object-oriented programming languages,
PowerShell programmers typically work with objects that have already been created as
opposed to defining and creating entirely new objects themselves. That is not to say that a
PowerShell programmer cannot create new objects; it is just not something that is commonly
needed.

PowerShell Versus cmd.exe

On the surface, there are many similarities between cmd.exe and the PowerShell. As far as
everyday tasks go, you should be able to use the PowerShell in place of cmd.exe. However,
under the covers, PowerShell is many times more advanced than its predecessor. As has
already been stated, PowerShell has direct access to resources provided by the .NET Frame-
work and a brand new scripting language specifically designed to support interaction
with .NET resources via cmdlets.

Another difference between the manner in which cmd.exe and PowerShell execute is the
manner in which data is passed between commands. Both shells support the use of pipes to
move data between commands. However, the type of data moved is completely different.

A pipeis alogical connection between two commands that supports the passage
of one command’s output to another command where it is received as input.

With cmd.exe, data is passed as text. Unfortunately, the output of one command often does
not come back in a format required by the second command. As such, shell script program-
mers typically have to add additional programming logic to their scripts to reformat one
command’s output into a format the other command can accept. Windows PowerShell uses
an object pipeline that allows the receiving cmdlets to access properties and methods of
objects generated by other cmdlets. With object piping, the programmer is relieved of the
responsibility of formatting object data, significantly simplifying the scripting process.

Table 1.1 lists a number of additional key differences between cmd.exe and PowerShell. As
you can see, Windows PowerShell boasts many key improvements, which you will learn more
about as you work your way through this book.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

TasLe .1 Key WiINDoOWs SHELL DIFFERENCES

Feature cmd.exe PowerShell
Regular Expressions No Yes
Exception Handling No Yes
Array Support No Yes
Functions No Yes
Script Signing No Yes
Tab Completion Limited Yes
N _J

WHAT’s NEw IN WINDOWS POWERSHELL 2.07?

Windows PowerShell 1.0 represented a giant leap forward in providing a full-featured and
powerful command-line interface for Microsoft Windows. Windows PowerShell 2.0 builds
upon and expands the strengths of Windows PowerShell 1.0 by adding an impressive set of
improvements and new features, many of which are covered in this book.

Notable Windows PowerShell Changes

Windows PowerShell 2.0 includes several new language keywords. These keywords include
Data, Cmdlet, and DynamicParam. If you have any existing PowerShell scripts that have
variables or functions that have these names, you will need to change the names assigned
to those. Otherwise, errors will occur when you try to run these scripts using Windows
PowerShell 2.0. Windows PowerShell includes 129 cmdlets. The number of cmdlets included
with Windows PowerShell 2.0 exceeds 180, providing all sorts of new capabilities. For exam-
ple, one new cmdlet that you will learn about in Chapter 8 is the Out-GridView cmdlet, which
lets you display the results produced by other PowerShell commands in an interactive table
that you can then search and sort. For example, Figure 1.7 shows an example of a table that
lists active Windows processes that was generated using the Out-GridView.

New Windows PowerShell Features

Windows PowerShell 2.0 provides all kinds of new features and capabilities, many of which
are covered and demonstrated in this book. An abbreviated list of some of the more notable
improvements that are introduced in Windows PowerShell 2.0 are listed here:

» Graphical Windows PowerShell. A multi-tabbed shell and script editor that supports
syntax color-coding and line numbering as well as Intellisense and tab completion.

* Graphical Help File. A graphical Windows help file that allows you to search, view, and
print Windows PowerShell help files.

Chapter | ¢ Introducing Windows PowerShell @

(~ =
£3 Get-Procesc | Our-GridVisw == =

Using the Qut -
GridViewcmdlet,
you can generate
output that can be

searched and
sorted.

Background Jobs. The ability to execute cmdlets in the background, locally or on remote
systems, without tying up the Windows PowerShell command prompt.

New Operators. Additional operators that support operations like splitting a string up
into an array and concatenating multiple strings into a new string.

New Special Variables. Additional special variables generated and maintained auto-
matically by Windows PowerShell that provide access to things like Windows PowerShell
version information and language culture data.

New Cmdlets. More than 50 new cmdlets that significantly expand Windows PowerShell
capability and simplify its scripting environment.

Out-GridView. A particularly noteworthy cmdlet that displays output in a graphical
window, which can then be searched and sorted.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

* Script Cmdlets. The ability to create new cmdlets using Windows PowerShell’s scripting
language.

* Modules. The ability to partition and manage Windows PowerShell code in re-useable
collections or modules.

* Data Language. The ability to separate data from code within PowerShell scripts.

* Transactions. The ability to develop Windows PowerShell scripts that perform trans-
acted operations, giving them the ability to start, commit, and rollback transactions.

* Eventing. The ability to set up Windows PowerShell so that it listens for and reacts to
system events.

» Try-Finally-Catch. The ability to throw and handle exceptions in order to gracefully
manage script errors.

* New Debugging Features. The ability to set breakpoints on lines, variables, and com-
mands, and to step into, over, and out of scripts when debugging Windows PowerShell
script execution.

* Script Internationalization. The ability to programmatically determine the appropri-
ate language with which to display messages when Windows PowerShell scripts execute.

* Remote Execution. The ability to remotely run Windows PowerShell scripts on a net-
work computer for which you have security access permissions.

* Runspaces. The ability to set up separately managed execution spaces in which Windows
PowerShell scripts can be executed.

UNINSTALLING POWERSHELL 1.0

While Windows PowerShell 2.0 is 100 percent backwards-compatible with Windows
PowerShell 1.0, you cannot install it alongside or on top of PowerShell 1.0. Instead, you must
uninstall Windows PowerShell 1.0 before you can install version 2.0. If your computer is cur-
rently running PowerShell 1.0 and you do not want to upgrade to 2.0, then you can skip this
section and move on. Likewise, if your computer does not have PowerShell installed at all,
you can proceed to the next section where you will learn how to install and configure
PowerShell 2.0.

As was just stated, if your computer is running PowerShell 1.0 and you want to work with
version 2.0, you must first uninstall version 1.0. The steps required to do so vary depending
on which Windows operating system you are using. The following procedures explain how
to uninstall Windows PowerShell 1.0 on different Windows operating systems.

Chapter | ¢ Introducing Windows PowerShell @

Windows XP

1. Click on Start and then Control Panel.
2. Click on the Control Panel’s Add or Remove Programs option.
3. Locate and click on the Windows PowerShell entry and click on Remove.

Windows Vista

1. Click on Start and then Control Panel.
2. Click on the Control Panel’s Uninstall a Program link.
3. Locate and click on the Windows PowerShell 1.0 entry and click on Uninstall.

Windows Server 2003

1. Click on Start and then Control Panel.
2. Click on the Control Panel’s Add or Remove Programs option.
3. Locate and click on the hot fix that was used to install Windows PowerShell, which will
be one of the following, and click on Remove:
- Hotfix for Windows Server 2003 (KB926139)
- Hotfix for Windows Server 2003 (KB926140)
- Hotfix for Windows Server 2003 (KB926141)

Windows Server 2008

On Windows 2008, Windows PowerShell is managed as an optional server component, which
can be enabled and disabled. Before Windows PowerShell 2.0 can be installed, you must dis-
able Windows PowerShell 1.0, as outlined here:

1. Click on Start, right-click on Computer, and then click on Manage.
2. Select the Remove a feature option.
3. Locate and select Windows PowerShell.

INSTALLING AND CONFIGURING WINDOWS POWERSHELL

In order to install Windows PowerShell your computer must meet the requirements outlined
in this book’s introduction. As of the writing of this book, both Windows PowerShell 1.0 and
2.0 were available as a free download provided by Microsoft and could be downloaded and
installed from the Microsoft PowerShell website located at http://www.microsoft.com/
technet/scriptcenter/topics/winpsh/pshell2.mspx.

Both versions of Windows PowerShell download as a self-extracting executable that you can
install by double-clicking on it. If your computer is not already running version 2.0 of the .NET
Framework, you must download and install it before you can install and run either version
of Windows PowerShell. If you attempt to install Windows PowerShell without .NET 2.0

http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pshell2.mspx
http://www.microsoft.com/technet/scriptcenter/topics/winpsh/pshell2.mspx

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

installed, you will see a popup dialog message instructing you to install it and the Windows
PowerShell installation process will stop.

If necessary, you can get .NET 2.0 by going to http://[www.microsoft.com/downloads/
Search.aspx?displaylang=en and downloading and installing the .NET Framework Ver-
sion 2.0 Redistributable Package. Once .NET 2.0 has been installed, you can install Windows
PowerShell. The install of PowerShell does not take long and ends with the addition of the
Windows PowerShell group on the All Programs menu, as demonstrated in Figure 1.8.

Don’tforgetthatifyouare goingtoinstall Windows PowerShell 2.0andyouwant
to be able to take advantage of all of its features, you will need to install .NET
3.0 or .NET 3.5, depending on the features you want to be able to work with.

Windows PowerShell V2 (CTP2)
|| Getting Started
E Graphical Windows PowerShell VE[Ci

|| Quick Reference

|| Release Notes
FIGURE 1.8 || User Guide

E¥ Windows PowerShell V2 (CTP2)
Windows

PowerShell A Back
appears on the All
Programs menu.

Once installed, you must configure Windows PowerShell before you can begin working with
it. Although Microsoft markets the Windows PowerShell as a secure environment for both
command line execution and scripting, the addition of a new shell and scripting language
opens up the potential for exploitation by hackers. As such, Microsoft forces you to explicitly
decide whether you trust Microsoft as a publisher of PowerShell scripts. Your choices are as
follows:

* [D] Do not run
* [R] Run once
* [A] Always run
* [?] Help
Responding by entering A and pressing the Enter key allows you to run PowerShell scripts

developed by Microsoft.

Another security feature implemented by Microsoft is the inability to run scripts by double-
clicking on them from the Windows desktop. Microsoft also forces you to make one more
decision before you can start running PowerShell script files on your computer by establishing

http://www.microsoft.com/downloads/Search.aspx?displaylang=en
http://www.microsoft.com/downloads/Search.aspx?displaylang=en

Chapter | ¢ Introducing Windows PowerShell @

an execution policy that permits PowerShell scripts to run at one of three security levels, as
outlined here:

* Allsigned. Only permits scripts that have a trusted signature to execute on your
computer.

* Remotesigned. Permits PowerShell scripts downloaded from the web to run only if they
are from a trusted source.

* Unresricted. Allows any PowerShell script to run on your computer.

Before PowerShell will allow you to run your first PowerShell script, you will need to set one
of Windows PowerShell’s execution policy settings. For example, to allow any PowerShell
script to run on your computer, you would enter the following command at the PowerShell
command prompt.

Set-Executionpolicy Unrestricted

If you get an error message when you attempt to configure PowerShell’s exe-
cution policy, restart Windows PowerShell by right-clicking on its icon and
selecting the Run as Administrator option, and then run the command again.

Your choice of what execution policy to set should be based on your scripting
needs and security requirements. If you decide later that you want to change
your Windows PowerShell execution policy, you may do so at any time by re-
executing the Set-Executionpolicy command and passing it one of the options
listed above.

CoNFIGURING WINDOWS REMOTE MANAGEMENT

One significant new feature provided by PowerShell 2.0 is remote execution, which gives you
the ability to execute PowerShell cmdlets on remote computers, provided that both the local
and remote computer has the Windows Remote Management (WinRM) service enabled.
Remote execution also requires the WS-Management protocol be configured to work with the
Windows PowerShell.

As of the writing of this book, Windows PowerShell’s support for remote exe-
cution was limited to computers running Windows Vista and Windows Server
2008. However, hopefully this will change.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

You can determine the status of the WinRM service by executing the following cmdlet at the
Windows PowerShell command prompt.

PS C:\> Get-Service winrm

Status Name DispTlayName

Stopped WinRM Windows Remote Management (WS-Manag...

PS C:\> Start-Service winrm

By default, WinRM is automatically started on Windows Server 2008 but not on Windows
Vista. If WinRM is not running, you will need to start it. To start it using PowerShell, you need
to open a new PowerShell Windows Command Console, running it as Administrator. To do
so, click on Start > Windows PowerShell, right-click on Windows PowerShell, and click on the
Run as Administrator option. Next, type the following command and press Enter.

PS C:\> Start-Service winrm

Once you have ensured that the WinRM service is running, you need to configure the WS-
Management protocol to work with Windows PowerShell, which you can do on Windows
Vista or Windows Server 2008 by executing the following steps.

1. Open a new PowerShell Command Control using the Run as administrator option.
2. Type the following statement at the command prompt and press Enter.

PS C:\> & $pshome\Configure-Wsman.psl

Note that the last characterin the .ps| file extensionis the number | and not the
lowercase letter L.

Once executed, the computer will be able to function as both a remote execution client and
aserver. Since Windows PowerShell’s remote execution feature relies on the WS-Management
protocol, it uses HTTP and all network packets exchanged between the client and server are
sent and received over port 80, making remote execution very firewall friendly.

Nty

LI You will learn more about remote execution in Chapter 9, “Basic System

Administration.”

Chapter | ¢ Introducing Windows PowerShell @

INTERACTING WITH THE POWERSHELL COMMAND PrROMPT

The Windows PowerShell provides programmers with access to 129 (181 for PowerShell 2.0)
cmdlets (pronounced command-lets), each of which is a .NET class that provides access to
specific system resources. Like traditional command shells, the Windows PowerShell uses
pipelines to pass data between cmdlets; however, instead of passing data as text, it is passed
as objects. The inherent advantages of this approach include:

* When accessed from the command line, data is returned and displayed as text
* When data is passed from cmdlet to cmdlet, it is passed as objects or structured data

* Data passed between cmdlets is automatically converted into any format that is appro-
priate based on the current situation

Cmdlets also share access to a universal set of options. These options provide the ability to
specify how errors are handled as well as options that allow you to run cmdlets using a
-WHATIF option that lets you see the effect that a command would have without actually mak-
ing any changes. Cmdlets also support a -CONFIRM option that allows you to prompt the user
for approval before execution within scripts.

Windows PowerShell cmdlets use a naming syntax that consists of verb-noun pairs. The verb
is always on the left-hand side and is separated from the noun by a hyphen. The verb describes
the action that is to take place and the noun identifies the target to be acted upon. Nouns
are specified in a singular form. For example, the Get-* verb is a universal verb used to
retrieve resources such as objects and properties. Using the Get-* verb and the
Property noun, you could, for example, retrieve information about a given object’s properties
(e.g., Get-Property).

By combining the Get-* verb with the Help noun, you can execute the Get-Help cmdlet to get
help on any cmdlet. For example, Figure 1.9 demonstrates how to use the Get-Help cmdlet,
which retrieves information about other cmdlets, to get information about the Read-Host
cmdlet.

Starting a New PowerShell Session

To start a new Windows PowerShell session, select Start > All Programs > Windows PowerShell
> Windows PowerShell. A new Windows command console is opened and the Window
PowerShell command prompt is displayed, as demonstrated in Figure 1.10.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

2+ Wingows Fowershell o = 3
%2 Get—Help HeadHost -

F
Read-Host

= a Vline af inpot Feam the cons=ale. Yan can
t. Becavse yo n save t input
you can e dlet to prompt vsers For secure data.
5, o5 well as shared data.

HELATED LINES

Get Host

Uonuértr n-secureitring
et—help Read-Host —

For more information, type:
Exarnining heLp For technical information, type: "get-help Head-H
information about

the Read-Host
cmdlet.

=8 Windows PowerShell —|o] x|
hell UZ (Community Technology Preview — Features Subject to Changel

28880 Microsolt Corporation. All rights reserved

Access to the
PowerShell is
provided via the
Windows
command
console.

Executing PowerShell Cmdlets

You interact with the PowerShell by submitting commands at the command prompt, which
typically looks something like PS C:\>, as demonstrated in Figure 1.11. PS is simply an abbre-
viation for PowerShell. C:\ represents the current working directory, and the > character
indicates that PowerShell is ready to receive input. You enter commands for PowerShell to
process by typing them in and pressing Enter. What happens next depends on the command
you entered. By default, any command you type is processed and any output is returned as
text, as demonstrated in Figure 1.11.

Chapter | ¢ Introducing Windows PowerShell

& Windows PowerShell =|0] x|
% C:\IextFiles? Get—Childitenm

Directory: Microsoft.PowerShell.Core’FileSystem::C:\TextFiles

Length Name

8cC

a =
2888 B 8 To Do List.txt
9/28/2088 = 8 Uendor s.txt
FIGURE .11
[PS C:\TextFiles> _
The Get-
ChildItem

cmdlet displays
the contents of
the current
working directory.

The command executed in Figure 1.11 is the Get-ChildItem cmdlet, which retrieves the con-
tents of a folder. Since a path was not specified, the current working directory was used. In
order to help users and administrators make the transition to working with Windows Pow-
erShell as easy as possible, Microsoft has developed a collection of cmdlet aliases that can be
used in place of actual cmdlet names. Within the Windows PowerShell, an aliasis alink to a
particular cmdlet. In many cases, Microsoft has created multiple aliases for a given cmdlet.
For example, since a user or administrator may find it difficult at first to remember to use
Get-ChildItem to display the contents of a folder, Microsoft has created an alias of dir for this
cmdlet. You can therefore type dir in place of Get-ChildItem and you receive the same exact
results, as demonstrated in Figure 1.12.

52 Winoows Fowershell _lo]x]

FIGURE 1.12

Leagth N dirisan alias for

? b -

9./28. : 8 Filca.txt the Get

9 To Do List.txt ChildItem

? 4 = Uendor Acconnts.txt dlet ided

cmdlet provide

PS C:\TextFiles) to help Windows

users and

administrators

make the switch

from cmd.exe to
the Windows

PowerShell.

Recognizing that not everybody is an experienced Windows user or administrator, Microsoft
has also created an alias of 1s for the Get-ChildItem cmdlet in order to help smooth the

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

transition to Windows PowerShell for users and administrators with a Linux or UNIX back-
ground. As Figure 1.13 shows, entering 1s at the PowerShell command prompt results in the
exact same results as the previous two examples.

C- \TextFiles> l=

Divectory: Microzoft _Powerfhell Core\FileSystem::=C:\TextFiles
de LastWriteline Length Hame
3 a mer Mames.txt
R R 3 B Files
Isisanaliasforthe = g 42 PH 8 To Do List.txt
. 3 £ :42 PN ¥ UVendor counts.txt
Get-ChildItem

cmdlet provided PS C:\IextFiles>
to help Linux and
UNIX users and
administrators
make the switch to
the Windows
PowerShell.

Windows PowerShell provides access to 129 cmdlets (PowerShell 2.0 has 181),
most of which have at least one alias. You will find a complete list of Windows
PowerShell cmdlets in Chapter 3, “Object-Based Scripting with .NET.”

Other Types of Commands

It is important that I do not leave you with the impression that the only types of commands
that you can run from the Windows PowerShell command prompt are cmdlets. In fact, you
can run any executable file. One way to locate executable files is by using the Get-Command
cmdlet as demonstrated below.

Get-Command *.exe

In response, PowerShell will display a listing of all the executable files it can find. If you
examine this list, you will probably see a number of executable files that you are already
familiar with. For example, you could start the Notepad application by typing notepad and
pressing Enter at the PowerShell command prompt.

A Short PowerShell Workout

The best way to become familiar with Windows PowerShell is to begin working with it. In this
section, you will get the chance to do just that. Specifically, I will provide you with a series of
command-line examples that will give you a feel for the types of cmdlets supported by win-
dows PowerShell as well as the overall syntax involved in executing them.

Chapter | ¢ Introducing Windows PowerShell @

For starters, let’s execute a command that provides a list of all active processes currently
running on the computer. This can be accomplished using the Get-Process cmdlet as demon-
strated by the following.

PS C:\> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
643 6 1764 1512 73 500 csrss
55 2 1116 792 45 0.39 2168 ehmsas
1327 39 77956 33208 318 1,458.34 772 explorer
20 2 716 248 32 0.03 2524 hpsysdry
31 2 924 412 45 0.05 3900 hpwuSchd2
0 0 0 24 0 0 Idle
92 4 2504 1724 65 0.25 4016 ISUSPM
603 9 4088 1728 54 628 1sass
195 3 1976 1192 30 644 1sm
42 2 1040 0 36 1428 LSSrvc
73 3 1568 1080 57 1168 MDM
573 17 12896 4892 126 54.51 2428 MSASCui
52 2 1132 0 36 908 nvvsvc
69 3 1332 324 64 0.06 2196 0SA
73 3 2444 1008 59 21.93 3888 0SD
435 11 29456 28924 159 3.17 6768 powershell
64 3 3168 268 64 0.11 4068 rund1132
256 8 2548 2848 38 604 services
95 3 5632 480 49 1276 SLsvc
370 12 10988 4920 109 1764 spoolsv
469 13 17004 6192 78 1072 svchost
664 23 27808 8160 130 1468 svchost
660 0 0 484 20 4 System
136 5 2120 1816 54 3552 taskeng
75 3 2332 1388 45 3.96 2756 unsecapp
103 5 1396 1020 46 552 wininit
126 3 2016 80 47 748 winlogon
125 4 3516 2132 39 2260 WmiPrvSE

PS C:\>

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

In response to the Get-Process cmdlet, Windows PowerShell displays a structured table
complete with headings that lists each active process on the computer as well as a bunch of
other information related to each process. Most cmdlets accept parameters that you can
alter to further specify how you want them to execute. As you have already seen, by itself the
Get-Process cmdlet retrieves a list of all the processes running on your computer. This cmdlet
also support an optional -ProcessName parameter that lets you specify a process that it should
look for, as demonstrated here:

PS C:\> Get-Process -ProcessName Winword

HandTles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
489 16 29424 54952 356 24.52 5240 WINWORD
PS C:\>

In this example, the Get-Process command has been instructed to display information about
the Winword process (if it is running). As you can see, cmdlet parameters begin with a hyphen
followed by the name of the parameter being specified and then the actual parameter. Cmdlet
syntax is very straightforward but also very strict. However, the extra discipline also makes
Windows PowerShell syntax easier to learn and remember.

The Windows PowerShell is flexible in many circumstances; often you only need to type in
as much as is required to uniquely identify a parameter from other parameters. As a result,
you could retype the previous example as shown next and Windows PowerShell will recognize
that the argument being passed is the Process-Name parameter.

PS C:\> Get-Process -ProcessN winword

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName
495 17 29548 55400 361 28.88 5240 WINWORD
PS C:\>

Many cmdlets, including the Get-Process cmdlet, define positional parameters, allowing you
to pass arguments to the cmdlet without explicitly specifying the parameter they are
supposed to match up against. For example, since the first parameter expected by the
Get-Process cmdlet is the -ProcessName parameter, you can omit the -ProcessName or -p and
supply just the name of a process. The cmdlet will automatically assume that the first argu-
ment you pass to it is the name of a process, as demonstrated here:

Chapter | ¢ Introducing Windows PowerShell @

PS C:\> Get-Process winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
501 17 29768 55996 366 31.82 5240 WINWORD
PS C:\>

Also, you can cast a somewhat wider net and view all of the processes whose names begins
with the letter w, as demonstrated here:

PS C:\> Get-Process w*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
103 5 1396 1020 46 552 wininit
126 3 2016 80 47 748 winlogon
513 17 30192 56280 380 34.41 5240 WINWORD
125 4 3516 2132 39 2260 WmiPrvSE
300 4 3436 1936 56 2624 WUDFHost

Most cmdlets allow you to refine their execution by passing them addi-
tional information for processing as arguments. In the case of the preceding
Get-Process w* example, the * wildcard character was passed along with the
w character.

In this example, the Get-Process cmdlet retrieves a list of all active processes whose name
begins with the letter w, as specified by the w*.

The * character is a wildcard character that is used in pattern matching. Its pur-
pose s to set up a match with any number of characters. For example, T*p would
match any of the following strings

° Tp
e Top

e Toooooooop

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The ? character is another wildcard matching character that is used to setup a
pattern match with a single character. For example, T*p would match Tip or Top
but not Toooooooop.

If you have previous command-line experience then hopefully the examples you have just
seen should look reasonably familiar. If you don’t have a lot of command-line experience,
don’t worry; you will by the end of this book, and examples such as these will eventually
become second nature to you. Before moving on, let’s look at one more command-line
example.

In this example, the Get-Process cmdlet is used to retrieve a list of all active processes whose
names begins with the letters wi. Next, using a technique known as object piping, the results
of this command are passed to the Format-Table cmdlet. The Format-Table cmdlet displays
command output in a table format, allowing you to specify a number of optional parameters.
In this example, the -groupby property is used to instruct the cmdlet to organize output by
process name, as demonstrated here:

PS C:\> Get-Process wi* | Format-Table -groupby ProcessName
ProcessName: wininit

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName

103 5 1396 1020 46 552 wininit
ProcessName: winlogon

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

e s w5 s @ 748 winlogon
ProcessName: WINWORD

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

519 17 30304 56484 385 38.89 5240 WINWORD

Chapter | ¢ Introducing Windows PowerShell @

WINDOWS POWERSHELL SCRIPTING

Windows PowerShell scripts are plain text files with a .ps1 file extension. These script files
are made up of one or more PowerShell script statements. Once created, PowerShell scripts
are executed like any PowerShell command or cmdlet; you just type in its name at the
PowerShell command line and optionally pass any arguments required by the script.

Windows PowerShell comes complete with its own brand-new scripting language, which
supports a full range of programming language features, including support for:

e variables, arrays, and hashes

» conditional logic statements

* looping statements

» functions

e error handling

You will learn about the Windows PowerShell programming language in
Chapters 3-7.

SIMPLIFYING POWERSHELL SCRIPT EXECUTION

To run a PowerShell script, all that you have to do is type in the name of the script at the
PowerShell command prompt. In response, the PowerShell will search every folder in your
default search path looking for the specified PowerShell script.

| suggest that you create a new folder named something like MyScripts and use
it as the storage location for all your PowerShell script files; this will make your
script files easy to find.

To see the contents of your default path, start PowerShell and type $env:path, as demon-
strated here:

PS C:\> $env:path

In response, you should see output similar to this.

C:\PerT\bin\;C:\WINDOWS\system32;C:\WINDOWS;C: \WINDOWS\System32\Wbem;c:\Python2
2;C:\Program Files\Windows PowerShell\vl.0\
PS C:\Documents and Settings\Owner>

This output shows that on my computer, the PowerShell will search each of the following
folders looking for the specified PowerShell script file.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

C:\PerT\bin\

C:\WINDOWS\system32

C:\WINDOWS

C:\WINDOWS\System32\Wbem

c:\Python22

C:\Program Files\Windows PowerShell\v1.0\

There are a number of different options open to you for making your Windows PowerShell
scripts easy to execute. For starters, you can store your PowerShell scripts in one of the
folders that is already listed in your default path. However, this is probably not a good idea.
It is a much better idea to store them someplace that works better for you and to run your
PowerShell scripts from there. One way to do this is to switch over to the folder where your
PowerShell scripts are stored and then precede the name of your PowerShell script with
a ./ when running them.

PS C:\> cd c:\ShellScripts
PS C:\> ./knockknock.psl

By appending ./ in front of your PowerShell script filename, you temporarily add the current
folder to your search path, thus letting PowerShell find it. A more permanent way of dealing
with things is to add your script folder to your default search path, which you can do on
Windows Vista by clicking on Start and then right-clicking on Computer, selecting Properties,
clicking on the Advanced system settings link property and then clicking on Continue when
prompted for permission to continue. This displays the System Properties dialog. Next, click
on the Environment Variables button, locate the path variable in the System variables list
located at the bottom of the window, and then click on the Edit button and append a semi-
colon followed by the full path name of your script folder to the end of the path string. Once
you have finished making this modification, you will need to reboot your computer for the
change to take effect.

Back 1o THE KNock KNnock JokeE GAME

Okay, itis time to turn your attention back to the development of this chapter’s game project,
the Knock Knock Joke game. The creation of this script will demonstrate the mechanics
involved in creating and running PowerShell scripts. In addition, this game will demonstrate
how to develop a PowerShell script that can interact with the user by retrieving command
line input and displaying text output.

At this point in the book, it is not expected that you will understand what each script state-
ments does or how it works. You will learn the basics of the PowerShell scripting language

Chapter | ¢ Introducing Windows PowerShell @

later in Chapters 4 through 7. For now, your primary focus should be on learning the steps
involved in script creation and execution.

Designing the Game

It is always a good idea to spend a little time planning out the design and organization of
your PowerShell scripts before you begin writing them. This will help reduce errors and
decrease the amount of time it takes to get the job done. As you saw earlier in this chapter,
the script begins by clearing the screen and then prompting the player to answer two ques-
tions correctly before displaying the punch line for the first joke. Two additional jokes are
then told in succession. The game ends after displaying a little information about itself and
its author.

As you can see, the series of steps required to tell a joke is not terribly complicated. To develop
the PowerShell script file, we will assemble it in eight steps, as outlined here:

. Create a new script file and add an initial statement that clears the screen.

. Display the first line of the first joke and wait for the player to respond.

. Display the second line of the first joke and wait for the player to respond again.
. Displays the first joke’s punch line.

. Pause script execution to give the player a chance to enjoy the joke.

. Tell the script’s second joke.

. Tell the script’s third joke.

. Display closing script and author information.

O Ul B~ WIN R

Creating a New PowerShell Script
Begin by opening your preferred text or script editor and saving a new script file named
KnockKnock.ps1. Next, add the following statement as the first line in the script file.

Clear-Host

psl is PowerShell’s standard file extension. You will be using it for all the
PowerShell game scripts you create in this book.

Clear-Host is a Windows PowerShell cmdlet. When executed, it clears out any text currently
displayed in the Windows command console, preparing it for the display of new text.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

If you prefer, you can also clear the Windows command console by substituting
the clear orcls command forthe Clear-Host command. clear and cl1s are both
aliases for Clear-Host. Windows PowerShell supports well over one hundred
cmdlets, most of which have at least one alias. You will find a complete list of
Windows PowerShell cmdlets in Chapter 3, “Object-Based Scripting with .NET.”

Prompting the Player to Begin the Game

Now it is time for the game to display the first joke’s opening "Knock Knock!" string and wait
for the player to respond by typing in the string Who is there?. To complete this portion of
the script, add the following statements to the end of the script file.

A stringis a series of zero or more characters surrounded by double quotation
marks.

$userReply = ""

while ($userReply -ne "Who is there?"){
$userReply = read-host "Knock Knock!"
}

The first statement declares a variable named $userReply, assigning it an empty string. This
variable will be used by the while loop block that follows to store and analyze the input keyed
in by the user. The while loop has been set up to execute until the player enters the expected
response. Note that it is the single statement located inside the while loop that displays the
opening "Knock Knock!" string prompt, which it does using the Read-Host cmdlet to read a
line of input from the Windows command console.

A variableis a pointer to a location in memory where a value is stored. You will
learn more about variables in Chapter 4, “Working with Variables, Arrays, and
Hashes.” A loop a is collection of one or more statements that are repeatedly
executed as a unit. You will learn more about loops in Chapter 6, “Using Loops
to Process Data.”

Collecting Additional Player Input

Once the player has provided the correct response to the opening "Knock Knock!" prompt, the
game needs to display the joke’s set-up line, which is accomplished by adding the following
statements to the end of the script file.

Chapter | ¢ Introducing Windows PowerShell

Clear-Host

while ($userReply -ne "Orange who?"){
$userReply = read-host "Orange."
}

As you can see, the first statement shown here clears the Windows command console screen.
Next, a while loop executes using the Read-Host cmdlet to display a prompt of "Orange." The
player must then respond by entering "Orange who?" in order for the game to continue.

Displaying the Punch Line
Once the player has provided the correct response, the script displays the first joke’s punch
line. This is accomplished by adding the following statements to the end of the script file.

Clear-Host
Write-Output "Orange you glad you created this PowerShell script?”

The first statement clears the Windows command console screen. The second statement dis-
plays a text string containing the first joke’s punch line using the Write-Output cmdlet.

By default, the Write-Output cmdlet writes a line of text to the Windows com-
mand console screen.

Pausing Between Jokes

After each joke is told, the game is supposed to pause for five seconds to give the player an
opportunity to read the joke’s punch line. This is accomplished by adding the following state-
ment to the end of the script file.

Start-STeep -Seconds b

This statement executes the Start-Sleep cmdlet, telling it to pause script execution for 5
seconds.

Telling the Second Joke

At this point, the script’s first joke has been presented to the user. Now it is time to write the
code statements required to tell the game’s second joke. The code statements required to
complete this task are almost identical to the statements that presented the first joke, except
for some slightly different content in the text strings that make up the text of the joke. This
code, shown below, must be added to the end of the script file.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Clear-Host

while ($userReply -ne "Who is there?"){
$userReply = read-host "Knock Knock!"

Clear-Host
while ($userReply -ne "Orange who?"){
$userReply = read-host "Orange."

Clear-Host
Write-Output "Oranges are oranges but this is PowerShell scripting!”

Start-Sleep -Seconds 5

Telling the Third Joke
The code statements responsible for telling the game’s third joke are shown next. These
statements need to be added to the end of your PowerShell script file.

Clear-Host

while ($userReply -ne "Who is there?"){
$userReply = read-host "Knock Knock!"

Clear-Host
while ($userReply -ne "Banana who?"){
$userReply = read-host "Banana."

Clear-Host
Write-Output "Orange you glad I didn't say orange?"
Start-Sleep -Seconds 5

As you can see, these code statements are almost identical to the statements that presented
the first and second jokes, except for some slightly different text string content.

Chapter | ¢ Introducing Windows PowerShell @

Displaying Game and Author Information
The Knock Knock Joke game ends by clearing the Windows command console screen, dis-
playing a little information about the game and the game’s author and, after a three second
pause, clears the screen and ends. The code statements that make this happen are shown next
and should be added to the end of your script file.

Clear-Host

Write-Output "The Knock Knock Joke"
Write-Qutput ""
Write-Output "Copyright 2006 - Jerry Lee Ford, Jr."

Start-Sleep -Seconds 3

Clear-Host

The Final Result

At this point, your new Windows PowerShell script should be complete. Since this is your first
PowerShell script and since we built it in a series of different steps, I've gone ahead and laid
out a full copy of the entire script here, so that you can make sure that you did not miss
anything when keying your copy of the script.

Clear-Host

$userReply =
while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Clear-Host
while ($userReply -ne "Orange who?"){
$userReply = read-host "Orange."

Clear-Host
Write-Output "Orange you glad you created this PowerShell script?”

Start-Sleep -Seconds b5

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Clear-Host

while ($userReply -ne "Who is there?"){
$userReply = read-host "Knock Knock!"

Clear-Host
while ($userReply -ne "Orange who?"){
$userReply = read-host "Orange."

Clear-Host

Write-Qutput "Oranges are oranges but this is PowerShell scripting!”
Start-Sleep -Seconds b5

Clear-Host

while ($userReply -ne "Who is there?"){

$userReply = read-host "Knock Knock!"

Clear-Host
while ($userReply -ne "Banana who?"){
$userReply = read-host "Banana."

Clear-Host

Write-Output "Orange you glad I didn't say orange?"
Start-Sleep -Seconds 5

Clear-Host

Write-Output "The Knock Knock Joke"

Write-Qutput ""
Write-Qutput "Copyright 2008 - Jerry Lee Ford, Jr."

Chapter | ¢ Introducing Windows PowerShell @

Start-Sleep -Seconds 3

Clear-Host

Assuming that you have not made any typos, your Knock Knock Joke script should be ready
to run. If you run into any errors, then you have made a typo somewhere. If this is the case,
you will need to go back and review your work and find where you made a mistake.

SUMMARY

This chapter has taught you a lot about Windows PowerShell and Windows PowerShell script-
ing. You learned what makes Windows PowerShell different from its predecessor and exam-
ined its major features and components, including major new features provided by Windows
PowerShell 2.0. You learned how to install and configure PowerShell. You learned how to
execute cmdlets and to create and run Windows PowerShell scripts. You learned how to get
help on different PowerShell commands. On top of all this, you created your first Windows
PowerShell game, the Knock Knock Joke game.

The Knock Knock Joke game is admittedly not the most advanced PowerShell script. Still, if
you are new to programming, you may not yet understand everything that you see. Don’t
worry about that for now. The important thing for you to take away from the development
of this script is a basic understanding of the mechanics involved in creating and executing a
Windows PowerShell script.

When it comes to computer games, there is always room for improvement. Before you move
on to the next chapter, I recommend that you spend a little more time working on the Knock
Knock Joke game by trying to implement the following list of challenges.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

CHALLENGES

I. As currently written, the Knock Knock Joke game presents
players with three somewhat bland jokes. | suggest that you
replace these jokes with knock knock jokes of your own.

2. With only three jokes, the Knock Knock Joke game does not
takeverylongtocomplete. Givethe playerabetterexperience
by expanding the number of jokes that are told.

3. Onceyouhave added your own jokes to the Knock Knock Joke
game, take credit for your work by modifying the developer
information that is displayed at the end of the script.

(cHAPTER)

INTERACTING WITH THE
WINDOWS POWERSHELL
ComMmMaND LINE AND
GRAPHICAL ENVIRONMENT

n order to work effectively with the Windows PowerShell and to develop

PowerShell scripts, you must have a solid understanding of how to interact

with Windows from the PowerShell command line. This chapter will pro-
vide instruction on how to configure the Windows command console to create a
better working environment with which to interact with Windows PowerShell.
This includes learning how to configure command console layout and to specify
your default working directory. This chapter will also explain how to take advan-
tage of Windows PowerShell’s built-in tab completion feature in order to save time
and reduce errors when keying in commands. You will also learn how to use Win-
dows PowerShell to navigate and access different types of system resources,
including the Windows registry, environment variables, and disk drives. On top
of all this, you will learn how to create your second PowerShell game, The Story
of the Three Amigos.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Specifically, you will learn how to:

¢ Set a default working directory for your PowerShell sessions
e Customize the Windows command console
e Reduce the time required to complete commands by taking advantage of tab completion

¢ Use Windows PowerShell to access different hierarchical data stores

ProJecT PREVIEW: THE STORY OF THE THREE AMIGOS

In this chapter, you will learn how to create a new computer game that tells The Story of
the Three Amigos. Key pieces of this mad-lib are collected from the user in the form of
responses to seemingly unrelated questions. The end result is a story that is never told the
same way twice. The Story of the Three Amigos begins by displaying its title page, as shown
in Figure 2.1.

‘2= Windows PowerShell =17

THE STORY
OF THE THREE HAI GOS
By Jerry Lee Ford. Jr.

The Story of the

Three Amigos is
toldapageata Press Enter to continue.

=

time.

The Story of the Three Amigos is a mad-lib in which player input is collected and plugged into
key places in the story to allow the user to participate in the story-telling experience. Before
asking any questions, the game informs the users of what is expected from them, as shown
in Figure 2.2.

In total, the user is asked four questions without knowing in advance the context in which
the answers will be used. Figure 2.3 provides an example of one of the questions asked by
the game.

Once the game has collected all of the information that it requires, it begins telling The Story
of the Three Amigos a page at a time. The first page of the story is shown in Figure 2.4.

Chapter 2 ¢ Interacting with the Windows PowerShell

[E= Windews Powershell

This is an interactive mad-1lib styled story. Before it can be

told, you must answer a few gucstions.

Press Enter to continue.

| 5 Windows Powershell

Enter the name of a scarw animal :

5 Windows PowerShell

Once upon a time therc were threc very zpecial children
named Alexander. William. and Mollw. Alexander was the oldest
and was known to he brave and strong. Molly, the vyoungest,
was just five years old. yet she possessed an extraordinary
zcnzc of awarcncsz that cven the wiszcst zage would

admire and respect. William, the middle child. was hoth hrave
and wise many times beyond his years. They lived together at
the top of a hill. just outslde the outskirts of town, where
they faithfully watched over the towncsfolk. Always together
and always looking out for each other and the people in the
town, they were known by evervone as The Three Amigos.

Press Enter to continue.

The Story of the
Three Amigosis an
interactive story
that depends on
user input.

Users must wait
until the story is
told to see how
their inputs are
used.

The opening page
of The Story of the
Three Amigos.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As users read through each page of the story, they will notice how the answers they provided
have affected the manner in which the story is told, as demonstrated in Figure 2.5.

5 Windows PowerShell —lal x|

.

One day. which started out no different than anv other daw. a
great roar was heard from the center of the town. Women and
small children could be seen screaming and running in panic.
The Threc fMimigoz climbed to the top of their watech towecr and
hegan scanning the town streets for the source of the noise
and panic. Alexander was the first to find the problem.
spotting a gigantic tiger moving guickly towards the

mayor’s office. Just ahead of the tiger» stood the town'se
nen,. attempting to make a desperate stand.

"Hurry, we must go!" shouted Molly. “The town needs The
Three Amigos?!™ In an instant Alexander. William, and Molly
Jumped into an old tank. scarred and worn by yeaws

of faithful service. and hurriedly raced into town.

The second page
of The Story of the Press Enter to continue. LI
Three Amigos.

Figure 2.6 shows the next page of the story, which explains how the story’s heroes defeat their
enemy and save the townsfolk.

&4 Windows PowerShell —lof =|

Within minutes The Three Amigos found themselves standing in
the center of Main street. The town was gquiet and seemed
almost deserted except for the old barbershop, where the citizens
had retrcated once their last stand had failed. The tiger
was standing in_front of the bharbershop. preparing to

break in and kill the good citizens of the town.

“What do we do?"” said Alexander. William looked around and
gaw a pile of donuts stacked up against the town
barbershop’s storefront. Follow me vyelled William,

heading straight for the pile of donuts. Alexander

and Molly instantly knew what to do, each grabhbing a donuts

and hurling pieces of donuts at the tigew». Unabhle to
m deal with the power of the attack launched by The Three
Amigos, the tiger fled the town. never to be seen or heard
uf ayain.
The third page of

The Story of the Press Enter to continue. |
Three Amigos.

The Story of the Three Amigos ends, like so many stories, with a happy ending, as shown in
Figure 2.7.

Chapter 2 ¢ Interacting with the Windows PowerShell

2= Windows PowerShell _|o] x|

The townzfoll ran out of thc baberzhop and began cheocring for
their heroes. Once again The Three Amigos had saved the daw.

THE ERD

The last page of
Press Enter to continue. The Story of the

L = .

Three Amigos.

By the time you have finished the Windows PowerShell script that makes up The Story of the
Three Amigos, you should have a good understanding of the mechanics involved in creating
and executing Windows PowerShell scripts.

AccessING WINDOWS POWERSHELL

As you have already seen, you can start a new Windows PowerShell session by clicking on
Start > All Programs > Windows PowerShell. When first started, the Windows command con-
sole appears and after a moment, displays the following information.

Windows PowerShell V2 (Community Technology Preview - Features Subject to Change)
Copyright (C) 2008 Microsoft Corporation. A1l rights reserved.

PS C:\>

By default, Windows PowerShell displays its name and copyright information each time it
is started. The name and copyright information is followed by a blank line and the Windows
PowerShell command prompt. The command prompt displays, by default, the Windows
PowerShell’s current working directory.

There are plenty of other ways to start new Windows PowerShell sessions. For example, you
can also start a new PowerShell session from within a cmd.exe shell console session by
typing PowerShell at the command prompt and pressing Enter. In response, a new PowerShell
session is started within the current command window. When done working with the
PowerShell session, you can close it and return to the cmd.exe session by typing Exit at
the PowerShell command line and pressing Enter.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Another way to start up a new Windows PowerShell session is to create a desktop shortcut
for it, which you can do by right-clicking on an open area of the Windows desktop and, when
prompted, selecting New > Shortcut. This will start a Create Shortcut wizard, whose job is to
walk you through the process of setting up new shortcuts. Type PowerShell in the Type the
Location of the Item field and click on Next. Next type Windows PowerShell in the Type a
Name for This Shortcut field and click on Finish.

In addition to starting a new Windows PowerShell session using the options
outlined above, Windows PowerShell 2.0 users can also work with Windows
PowerShell using a new Graphical Windows PowerShell application, which is
covered a little later in this chapter.

CustoMizING THE WINDOWS POWERSHELL WORKING ENVIRONMENT
Regardless of how you start a Windows PowerShell session, you will find yourself working
with it from within the Windows command console application. The good news is that the
Windows command console provides you with access to a rich set of commands and features
that help give you greater control over the manner in which you interact with the PowerShell
and can also be used to help you work faster and more efficiently.

Customizing Windows PowerShell Shortcuts

Placing a shortcut to the Windows PowerShell on your desktop provides convenient access.
One way to make the shortcut an even more convenient tool is by modifying its Start in field
to point to the folder where you have decided to store all your Windows PowerShell script
files. This way, all you have to do is double-click on your Windows PowerShell icon and a new
session will start up, using the specified folder as your current working directory.

The steps required to modify your Windows PowerShell shortcut as described above are out-
lined in the following procedure.

1. Right-click on your Windows PowerShell shortcut and select Properties. The Windows
PowerShell Properties will appear.

2. Type the full path name for your PowerShell script folder in the Start in field, as demon-
strated in Figure 2.8.

3. Click on OK.

The next time you start up a new Windows PowerShell session using this shortcut, the Win-
dows command console will appear and a new PowerShell session will be started with the
specified folder set as your current working directory, as demonstrated in Figure 2.9.

Chapter 2 ¢ Interacting with the Windows PowerShell

~

7% Windows PowerShell Properties ==
Colos | Compatibilty | Scouwity | Detaila |
Gerieadl Shortcut | Opliuns | Funil [Loy |

|(JE_-’. Windows PowerShel

Target type: Application
Target location: v1.0

| arget: rtern;ﬂf-.\-‘a’indows Howershell'w1 .ﬁ'-pow‘ashell.exe

Start in: CAllsers Jemy My Scrpts

Shorteut key: Mone

Run: [MNormal window =

Comment:

| Open File Location | | Change lcon... Advanced... ! FlGURE 2-8

Configuring your
Windows
PowerShell

shortcutin order
to specify its

0K | [Camcel |[foply | default working
directory.

¥ Windows PowerShell |of x|
we PowerShell U2 {(Community Technology Preview — Fsatures Subject to Changel
> 2888 Microcsoft Corporation. All »ights recerved.

PS C:\Users\Jerrp\MyScriptsd _

Starting a new
Windows
PowerShell
session using a
customized
shortcut.

CoNFIGURING THE WiNDOWs CoMMAND CONSOLE

Windows PowerShell is accessed through the Windows command console. By default, the
Windows command console displays text in a Window that is 45 lines long and 120 characters
wide. All text is displayed as white text on a blue background. As a Windows PowerShell
programmer, itis important that you know how to work with the Windows command console
and that it is configured to suit your personal preferences.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As the sections that follow will demonstrate, the Windows command console is highly con-
figurable, allowing you to modify its appearances and behavior in a number of ways. In
addition, it provides you with a number of handy editing commands for interacting with the
Windows PowerShell.

To help improve the presentation of figures in this book, | have modified my
version of the Windows command console to be 25 characters long and
80 characters wide. Also, | have set up text to display as black characters on
a white background.

Windows Command Console Customization Options

In order to customize the Windows command console, you must first open it up, which you
can do by starting a new Windows PowerShell session. Once opened, right-click on the Com-
mand Prompt icon located in the upper-left corner of the command console’s title bar and
then select Properties from the context menu that appears. This will open the Windows
PowerShell Properties dialog window. This dialog is organized into four property sheets. Each
of these sheets controls a different aspect of the Windows command console. You configure
the Windows command console’s behavior and appearance by modifying the attribute infor-
mation shown on these property sheets.

Even though this section highlights the configuration of the Windows command
consoleusing Windows Vista, theinformation provided here should also broadly
apply to Windows XP, Windows 2003, and Windows 2008.

Modifying Command Console Options
The first property sheet on the Properties window is the Options tab, as shown in Figure 2.10.
From here, you can modify the following Windows command console attributes:

e Cursor Size. Determines whether the command console cursor appears in a small,
medium, or large size.

¢ Command History. Determines the size of the command console’s buffers, which affects
the number of commands the command console stores and retrieves, as well as the
number of buffers in use and whether or not duplicate commands are saved as part of
the command console’s command history.

¢ Edit Options. Determines whether QuickEdit mode and Insert mode are enabled.
QuickEdit is a command console feature that supports the copying of text from the
command window and the pasting of text to the command prompt. Insert mode controls
whether text is inserted or overwritten when editing text keyed in at the command
prompt.

Chapter 2 ¢ Interacting with the Windows PowerShell

rﬁ “Windows PowerShell V2 (CTP2)" Properties
Options | Font | Layout | Colors |
Cursor Size
@ Smal
) Modum
) Largs
LCommand History Edit Uplions
Buffer Size: 50 [¥] QuickEdit Mode
Nubes of Bullers. 4 Insert Made
The Options
property sheet

provides access to
console attributes
that control
cursor size and
command history

as well as display

and edit settings.

Modifying Command Console Font Attributes
The second property sheet on the Properties window is the Font tab, as shown in Figure 2.11.
From here, you can modify the font size and font type used by the Windows command console.

(B "Windows PowerShell” Properties
| Options | Font !J.aym.rt|CoInts|

Window Mreview Size
dx B -
bx & T
0x 0
e ® |
5x12 =
Tx12
l8x12 |
16x12
12x16 ™

Font

aster [onis:

' Lucida Lonsole
Masterfonts |

kach characteris: -m

Ex;ﬂ::::;: Configuring font
attributes for the

Windows

command

console.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Changes to font size also affect the size of the Windows command console. The Windows
Preview area provides you with visual feedback regarding the effects of making a font size
change.

The Font property sheet also allows you to change the font type used by the Windows com-
mand console. The effects of a font type selection are made immediately apparent in the
Selected Font : Terminal section of the Font property sheet. Depending on the font that you
select, the Bold fonts attribute, located just above the list of available fonts, is enabled. When
enabled, this bolds console text, which depending on your preferences, may make console
text easier to read.

Changing the Layout of the Windows Command Console
The third property sheet on the Properties windows is the Layout tab, as shown in Figure 2.12.
From here, you can set the Windows command console's initial size and display location.

(@ "Windows PowerShell” Properties
| Options | Font | Layout | Colors |
Window Mreview
Screen Buffer Size
Widlr. 05|
Height: 300
Windaow Size
— - "
Height- 7
Window Position
| et 18
Top. [512
[7] Let system postion window
Modifying
Windows
command console
defaultscreensize
and Windows [ok]
position.

Changes made to Layout attributes are immediately reflected in the Window Preview portion
of the Layout property sheet. Configuration changes are made by modifying any of the fol-
lowing settings:

e Screen Buffer Size. The Width setting specifies the number of characters that are
displayed on a single line. The Height setting specifies the number of lines of text that
can be stored in memory, thus controlling the number of lines that you can scroll back
and view.

Chapter 2 ¢ Interacting with the Windows PowerShell

Windows Size. The Width setting specifies the number of characters that are displayed
on a single line. The Height setting specifies the number of lines of text the command
console displays by default. Regardless of these settings, you can always manually resize
the Windows command console like any other Windows application by right-clicking
on its edges and dragging them to a new location. It should be noted, however, that the
Windows command console cannot be resized any larger than the height and width
values set in the Screen Buffer Size section.

Windows Position. You can set the starting location of the Windows command console
by modifying these to specify the exact location where the Windows command console
should be displayed when started. Position is set by specifying the pixel count of the left
and right corner of the Windows command console’s upper-left corner. A pixel (picture
element) represents the smallest area that can be displayed or printed. Optionally, you
can allow Windows to determine the proper location for the Windows command console
by leaving the default Let System Position Window attribute selected.

I recommend that you set the Screen Buffer Size Height setting to at least three
times the height of the Window Size setting. This will allow you to scroll back
through several pages worth of previously executed commands and command
output.

Changing Command Console Color Attributes

The fourth property sheet on the Properties window is the Colors tab, as shown in Figure 2.13.
From here, you can change the Windows command console's foreground and background
colors.

The left-hand side of the top portion of the Colors property sheet provides access to four
different options. To configure these options, select them one at a time and then select a color
from the color strip located in the middle of the property sheet. The four options include:

Screen Text. Specifies the color used to display text.

Screen Background. Specifies the color used to display the command console’s back-
ground color.

Popup Text. Specifies the color used to display the text color of the Windows command
console's Command History dialog box.

Popup Background. Specifies the color used to display the background color of the
Windows command console's Command History dialog box.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

(.)
Bl "Windows PowerShell” Properties (3]

| Options | Font | Layout | Colors

() Sremen Text Selected Color Values

@ Scroen Bacleground Red:
) Popup Text Green:
) Popup Background Biue:

T T o

Selected Screen Colors

18-W1-¥Y

< i
3 18-B1-929
ur 4@A_f@d_00
FIGURE 2.13

Selected Popup Colors

Modifying the C: WINDOWS> dir
: SYSTEM <DIRY 18-81-99 5:@
Windows SYSTEM32 <DIR> 18-61-99 5-@I
Command console DTH TMT T™T DELADE AR_GA Q0 C =@l
foreground and
background color ok |

attributes.

If you prefer, you can specify a custom color instead of selecting a color from the color strip
by selecting one of these four configuration options and then specifying various levels of red,
green, and blue using the scroll bar controls located in the Selected Color values section at
the upper-right corner of the Colors property sheet.

The bottom half of the Colors property provides a visual preview of the effect of any changes
made to the Windows command console and its Command History dialog box.

Goingforward, |have set the screen background color of the Windows command
console to white and the screen text color to black. This will generate screen
figures that are more legible and easier to read for the rest of the book’s game
scripts.

Scripting Console Configuration

In addition to configuring the console as just explained using the Windows PowerShell Prop-
erties dialog, you can also configure the console programmatically. To do so, you need to
create a profile file named Microsoft.PowerShell_profile.psl and store it in your Windows
PowerShell profile path. Your profile path may vary depending on what operating system you
are using. To determine your profile path, execute the following command at the Windows
PowerShell command prompt.

PS C:\> $profile

Chapter 2 Interacting with the Windows PowerShell

In response, Windows PowerShell will display output similar to that shown here.

C:\Users\Jerry\Documents\WindowsPowerShelT\Microsoft.PowerShell_profile.psl

Using this information, make sure that the specified path structure exists on your computer
and then create and store a new script file named Microsoft.PowerShell_profile.pslinit. Any
PowerShell script statements that you add to Microsoft.PowerShell_profile.psl will auto-
matically be executed every time you start up a new PowerShell console session.

The trick to programmatically configuring the Windows PowerShell console is to execute the
Get-Host cmdlet, as demonstrated here.

PS C:\> Get-Host

Name : ConsoleHost

Version : 2.0

Instanceld : 81bb6d9d-c246-4143-98b3-e8436ebcafd8

UI : System.Management.Automation.Internal.Host.InternalHost
UserInterface

CurrentCulture : en-US

CurrentUICulture : en-US

PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

IsRunspacePushed : False

Runspace : System.Management.Automation.Runspaces.LocalRunspace

If you look at the output that the Get-Host cmdlet produces, you will see that it includes
information about a property named UI. This property provides access to a UI object, which
has a property named RawUI that you can use to access and manipulate console properties, as
demonstrated here:

$PSConsoleWindow = (Get-Host).UI.RawUI
$PSConsoleWindow.BackgroundColor = "White"
$PSConsoleWindow.ForegroundColor = "DarkBlue"

$PSCOnsoleWindow.WindowTitle = "Jerry's Customized PowerShell Console Session"

$PSConsoleWindow.WindowSize

$PSConsoleSize

$PSConsoleSize.Width = 80
$PSConsoleSize.Height = 25

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$PSConsoleWindow.WindowSize = $PSConsoleSize

Clear-Host

The opening statement in this script uses the Get-Host cmdlet and its UI property to access
the RawUI property. Note that the parentheses around the Get-Host cmdlet are required in
order to ensure that the UI property reference is applied to the result returned by the cmdlet
and not to the cmdlet itself. The end result is that the first statement generates an object
variable named $PSConsoleWindow, which can then be used to access and configure console
properties.

The second and third statements set the BackgroundColor and ForegroundColor properties for
the console window. The available list of colors for these two properties is provided here:

e Black

e Blue

* Cyan

¢ DarkBlue

¢ DarkCyan

e DarkGray

e DarkGreen

¢ DarkMagenta

¢ DarkRed

e DarkYellow

e Gray

e Green

* Magenta

* Red

* White

* Yellow
The fourth script statement uses the WindowTit1e property to assign a text string that will be
displayed in the console’s title bar, replacing the default Windows PowerShell string. The
next four statements configure the console’s size. To do so, the first of these statements creates
an object reference using the WindowSize property, naming it $PSConsoleSize. Next, this
object’s width and height properties are set, after which the configuration’s changes are re-

assigned to the $PSConsoleWindow object’s WindowSize property. Finally, the last statement in
the script executes the Clear-Host cmdlet. This refreshes the console window and forces the

Chapter 2 ¢ Interacting with the Windows PowerShell

immediate application of the configuration options applied by the script, as demonstrated
in Figure 2.14.

£ letry's Customized PowerShell Cansole Secsion o) x|
TS C:nUsers~Jerry~Desktop? . -

Programmatically
configuring the
PowerShell
= command
console.

Windows Command Console Editing Features

Because you access and interact with the Windows PowerShell within the Windows command
console, you have access to a host of helpful editing features that are built into the console.
For example, you can edit any command already typed in at the command prompt by using
the left and right arrow keys to move back and forth to locations within the command and
then use the Backspace or Delete keys to make any necessary changes.

In addition to this basic command editing capability, you can use any of the edit features
shown in Table 2.1 to take control of the command line and edit and execute commands.

TaBLE 2.1 WiNnDows CoMMAND ConNsoLE EpiT COMMANDS

Edit Feature Result

Up Arrow Moves back one position in the command line history buffer.

Down Arrow Moves forward one position in the command line history buffer.

Page Up Moves to the first command stored in the command line history buffer.

Page Down Moves to the last command stored in the command line history buffer.

Home Jumps the cursor to the beginning of the command line.

End Jumps the cursor to the end of the command line.

Control+Left Moves the cursor to the left a word at a time.

Control+Right Moves the cursor to the right a word at a time. J
"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The Windows command console maintains a list of commands that are executed
during the current working session. This list is referred to as the history buffer.

You can also view a listing of the commands stored in the Windows command
console’s history buffer by pressing the F7 key. In response, the Windows com-
mand console displays a window like the one shown in Figure 2.15.

B: Get-Process
1: Get—-Help
2: Get-Alias

Viewing and

executing
commands stored
in the Windows

command console

history buffer.

Note that to the Left of each command in the history bufferis a number. You can
execute any command list by selectingitand pressing the Enter key. If the buffer
contains more commands than can be displayed at one time, you can use the up
and down arrows to move up and down in the history buffer in order to locate
the command you are looking for.

WiNDows POWERSHELL EpiT ENHANCEMENTS

In addition to inheriting access to all the edit features provided by the Windows command
console, Windows PowerShell also provides you with access to a couple of PowerShell-specific
editing capabilities that you can use to work smarter and faster from the Windows PowerShell
command prompt.

Tab Completion

One powerful Windows PowerShell that merits explicit recognition is tab completion. Tab
completion allows you to type a part of a command and then hit the Tab key to get assistance
in filling out the rest of the command. For example, if you type get- at the PowerShell prompt
and then press the Tab key, PowerShell responds by displaying

Get-Acl

If this is the command you want, press Enter to accept this selection. Otherwise, press Tab
again to see the next available suggestion. If you continue to press Tab, PowerShell will con-
tinue to show you additional suggestions, until it exhausts the available list, after which it
starts over again letting you loop back through the list of suggestions. For example, if you

Chapter 2 Interacting with the Windows PowerShell @

were to continue to press Tab in the current example, you would eventually see each of the
following suggestions.

Get-Acl

Get-Alias
Get-AuthenticodeSignature
Get-ChildItem
Get-Command
Get-Content
Get-Credential
Get-Culture
Get-Date

Get-Event
Get-Eventlog
Get-ExecutionPolicy
Get-Help
Get-History
Get-Host

Get-Item
Get-ItemProperty
Get-Location
Get-Member
Get-Module
Get-PfxCertificate
Get-Process
Get-PSBreakpoint
Get-PSCallStack
Get-PSDrive
Get-PSEvent
Get-PSEventSubscriber
Get-PSJob
Get-PSProvider
Get-PSSnapin
Get-Random
Get-Runspace
Get-Service
Get-TraceSource
Get-UICulture

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Get-Unique
Get-Variable
Get-WmiObject

The obvious advantage of tab completion is that you do not have to remember all of a com-
mand to be able to key it in. You only have to remember enough to help PowerShell identify
the broad category and then start pressing Tab. Tab completion applies to more than just
helping you key in cmdlets; it can also assist you in filling in filenames, based on the contents
of the current working directory, variable names, and property names. For example, enter
the following statements at the PowerShell command prompt and press Enter.

$x = "Once upon a time..."

This statement creates a variable named $x and assigns it a value consisting of a text string.
Next, type $x. and then press the Tab key. In response, PowerShell will display the first of a
series of possible matches based on the contents of the command being formulated. In this
example, PowerShell will display methods appropriate for working with a variable that con-
tains a text string. When a method is selected, it is appended to the end of your current
command along with an opening left parenthesis, leaving it up to you to supply any additional
arguments and then the obligatory closing right parenthesis. For example, if you were to keep
pressing the Tab key until the ToLower(suggestion was displayed and then you pressed the
Enter key, you would end up with the following results.

$x.ToLower(

The ToLower () method is used to convert all of the characters that make up a
string to all lowercase characters. To finish off the previous example, all you
would need to do is add the closing right parenthesis and then press Enter, as
demonstrated next.

PS C:\> $x = "Once upon a time..."
PS C:\> $x.ToLower()

once upon a time...

PS C:\>

Alternatively, you could press the Enter key to select the ToLower(suggestion
and then type the closing right parenthesis and press the Enter key twice as
shown here.

PS C:\> $x = "Once upon a time..."
PS C:\> $x.ToLower(
>)

Chapter 2 ¢ Interacting with the Windows PowerShell @

>>
once upon a time...
PS C:\>

In this example, PowerShell did not execute the specified command when you
first pressed the Enter key because it knew the command was not complete.
Instead, it left you in Edit mode as indicated by the absence of the command
promptandthe presence of the >> characters on the left-hand side of the screen.
When you supplied the required closing right parenthesis and then pressed the
Enter key, PowerShell remained in Edit mode, allowing you to add to the com-
mand if necessary.Pressing Enterasecond time without entering any text closed
Edit mode and instructed PowerShell to execute your command.

The Get-History Cmdlet

You can also get your hands on entries stored in the history buffer using the Get-History
cmdlet. This cmdlet accesses history buffer commands and inserts them into the Windows
PowerShell pipeline, allowing you to programmatically access and manipulate them. For
example, using the Get-History cmdlet, you could display a list of commands stored in the
history buffer, as demonstrated here:

PS C:\MyScripts> Get-History

Id CommandLine
1 Get-Process
2 Get-Alias
3 Get-Help

With this information now in your possession, you can execute any of the commands in the
history buffer using the Invoke-History cmdlet, which takes as an argument a number rep-
resenting the position of a command in the history buffer. For example, to execute the second
command listed in the previous example, you would enter the following command at the
PowerShell command prompt and press Enter.

Invoke-History 2

While this may seem like a lot of work just to find and re-execute a simple two-word cmdlet,
the real value of the Get-History and Invoke-History cmdlets comes in to play when you find
yourself repeatedly executing a series of complex and lengthy commands. Not only will you
be able to work faster, but also once you have your commands entered correctly, you can re-
execute them over and over again without making any typos.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

WORKING WITH GRAPHICAL WINDOWS POWERSHELL

Anew Windows PowerShell feature introduced as part of version 2.0 is the Graphical Windows
PowerShell. The Graphical Windows PowerShell is a new scripting and development envi-
ronment that provides the ability to edit Windows PowerShell scripts and to work with the
Windows PowerShell command prompt within a single application window.

The Graphical Windows PowerShell is automatically installed as part of the Windows
PowerShell 2.0. It provides a number of editing features that make it a far better code editor
than Notepad. These features include:

» Statement Color Coding

¢ Line Numbering

¢ IntelliSense and Tab Completion

Multiple Document Interface

e Automatic Statement Indentation

In order to use the Graphical Windows PowerShell, you must have Windows PowerShell 2.0
installed as well as the .NET Framework version 3.0. To start the Graphical Windows
PowerShell, click on Start > Windows PowerShell V2 > Graphical Windows PowerShell. Alter-
natively, you can start it by typing PowerShell and pressing Enter from any open Windows
PowerShell console or by clicking on Start and typing PowerShell in the text search field
located at the bottom of the Start Menu and pressing the Enter key, as shown in Figure 2.16.

- Search Everywhere

J. Search the Internet

Starting Windows

PowerShell from =

Start menu.

When first started, Graphical Windows PowerShell displays two panes, as shown in
Figure 2.17. The upper pane is used to display Windows PowerShell output, and the lower
pane provides access to the Windows PowerShell command prompt.

Along the top of the Graphical Windows PowerShell is a menu bar, which provides access to
application commands. The File menu provides access to commands that create, open, save,
close, print, and run scripts. The Edit menu provides access to commands that allow you to
copy, cut, paste, redo, and undo. In addition, the Edit menu provides access to commands
that allow you to perform find and replace operations. The View menu lets you jump to any
of the three panes supported in the application and the Runspace menu lets you create and
close runspaces, so that you can set up and manage as many unique execution environments
asyou need. Lastly, the Help menu provides access to the Windows PowerShell Graphical help

Chapter 2 ¢ Interacting with the Windows PowerShell @

File, which provides better access to Windows PowerShell help files than is possible through
the Windows PowerShell console.

p
¥ Graphical Windows PowerShell
Fie Edit View Runspace Heip

% Script Editar

= e |

A

By default,
Graphical
; Windows

5 Cllierery> PowerShell
2 : displays an output
' pane and a
command prompt

pane.

Executing Windows PowerShell Commands

To use the Graphical Windows PowerShell to submit and process PowerShell commands,
all you have to do is start entering commands in the bottom pane, as demonstrated in
Figure 2.18.

Note that just to the left of the input pane you will find three icons, which provide you with
easy access to the cut, copy, and paste commands.

Configuring the Output Pane

As you can see, by default, the Graphical Windows PowerShell cleanly separates input from
output using two different panes. In order to display as much information as possible, a small
font (size 8) is used to display both input and output text. However, to make things easier on
your eyes, you may want to increase font size, which you can do by dragging the scroll bar
located at the bottom-right corner of the application window, to the right. As you drag the
scrollbar, you can view the effects of your adjustments by examining how the text displayed
in the input and output panes is adjusted, as demonstrated in Figure 2.19.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ST oA e
e onetaiton tssoit age. Roatowaipmee ot ot
&
Using the
Graphical 5 n
Windows I I
PowerShell to
execute §)
commands and i e
. L ==
view output.

Fle Eot View FRumsoxe Hep

o Senptidte
| ps Ci\Users\Jerry> -
Get-Host E |
A
Name : Graphical PowerShell Host
Version 1 2.0
Instanceid : d98480F0-c75e-4918-a39b-2783264c04a2
(1) 4 : System.Management.Automation.Internal.Host.InternalHostUser Inter face
CurrentCulture @ en-US
CurrentUICulture : en-Us
PrivateData |
1sRunspacePushed : False 1=
Runspace : System.Management.Automation.Runspaces.LocalRunspace

Changing the 5 3 Gee-Process -
default font size " -

can make viewing
outputa lot easier.

Chapter 2 ¢ Interacting with the Windows PowerShell @

Note that just to the left of the output pane, you will see a pair of icons that provide easy
access to the copy command and to the clear output command, allowing you to copy any
output you want and to clear the output pane at any time.

Editing and Executing PowerShell Scripts

Although it may not be immediately evident, the Graphical Windows PowerShell contains a
third pane, which by default is minimized at the top of the application window. You display
this pane by clicking on the pair of downward pointing arrows located on the left-hand side
of the minimized pane or by clicking on the New Script or the Open Script commands located
on the File menu.

Using the Scripts pane, you can create, edit, and execute Windows PowerShell scripts. For
example, take a look at Figure 2.20, which demonstrates how the Graphical Widows
PowerShell looks when used to create and edit Windows PowerShell scripts.

(E————
L Graphical Windaws PowsrShell (= o
File Eot View Runspate Heip

o Urvbdgd_:l.gg;' |

#(1, 2, 3, 4, 5) SAn areny made up of 5 items

#This look process the contents of the Snumbers array
Foreach (§i in Srumbers)

] (GEVTETY
(Fisure 2.20)
The Graphical
Windows
PowerShell
automatically
) . applies color
s & PcUeVey 7 coding and line
> : indentation to
your scripts and
displays line
numbers.

Completed p R

As you can see, statement color coding, line numbering, and statement indentation are auto-
matically applied as you work. These features alone make the Graphical Windows PowerShell
a much better editor than Windows Notepad. Even better, both the Input and the Scripting

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

panes support IntelliSense and tab completion. What this means is that you can get help
completing commands and statements by pressing the tab key when formulating code state-
ments. For example, try typing Get - at the command prompt in the lower pane and then press
the tab key. In response, the Graphical Windows PowerShell will display a suggestion for
completing the cmdlet. To accept its suggestion just continue typing the rest of your state-
ment. To see additional suggestions, keep pressing the tab key. You can also use Intellisense
and tab completion to help you with things like file and folder paths, registry paths, variable
names, and aliases.

Once you are ready to execute your Windows PowerShell scripts, you can do so without having
to leave the Graphical Windows PowerShell application window by clicking on the green Run
button located in the upper-left corner of the scripts pane (or by clicking on the Run Script
command located on the File menu). Figure 2.21 shows an example of how output will be
displayed when you run a script in the Graphical Windows PowerShell.

(
. Graphical Windaws PowesShell =R ol =
File Eg1 View Runspate Heip

o | Untiledlpslt

®(1, 2, 3, 4, 5) SAn array made up of 5 items

3This lock process the contents of the $numbers array |
foreach (§i in $numbers

L&

Write-Hast 51 #Mhsplay an item |

. 71 5

1

i = S

PS5 Cih\Users'Jerry>
$numbers = @(1, 2, 3, 4, 5) ¥An array made up of 5 items

¥ #This Yook process the contents of the Snunbers arruy
foreach (51 in Snushers) {

|
The Graphical
Windows
PowerShell’s
ability to letyou
edit and execute
scripts from
within a single =)
window is very e — =
handy. =

Write-Host $1 #Display an item

Once you are done working with a script file, you can save it using the Save Script command
located on the File menu.

Chapter 2 ¢ Interacting with the Windows PowerShell

Creating Additional Runspaces

In addition to all of the features already demonstrated, the Graphical Windows PowerShell
allows you to work with more than one Windows PowerShell environment at a time, running
each one in its own runspace. You can open additional runspaces by clicking on the New Run-
space command located on the Runspace window. Whenever you work with more than one
runspace at a time, the graphical Windows PowerShell displays tabs along the left-hand side
of the script pane for each open runspace. The tab for the currently selected runspace is
highlighted in orange, as demonstrated in Figure 2.22.

e —
- Geaphacal Windaws PowerShell | o |ﬁ
File Eon View Runspace Heip

7| Unbitedzpsl |

-
=

| runssace2 | Runspace1
’

A

By clicking on the
tabs displayed on
P & the right-hand
& @ PCseey 0y side of the
window, you can
switch between
different
runspaces.

.V

Because each runspace displayed in the Graphical Windows PowerShell window represents
a separate working environment, you can open and work with more than one script at a time
within any given runspace. When you do this, a tab located at the top of the current runspace
is displayed for each open script, as demonstrated in Figure 2.23.

Using the Graphical Windows PowerShell editing commands, you can easily copy and paste
code statements between scripts. Even better, you can use the prompt pane to develop and
test commands and statements to make sure they do what you want before copying and

pasting them into your script files.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

r;! Graphical Windows PowerShall ==

File cor View Rumspace Heip

Untitiedlpsl® | ThreeAmigaspsl Confasl |

REERE L

A

You can work with
more than one
scriptatatimeina
runspace.

Accessing the Windows PowerShell Graphical Help Files

Windows PowerShell 1.0 provides access to its help files through the Get-Help command,
which is demonstrated in Chapter 3. While certainly helpful, displaying text-based help files
within the PowerShell console window is somewhat challenging and time consuming. Win-
dows PowerShell 2.0 remedies this situation by providing access to the Windows PowerShell
Graphical Help file, which you can access from the Graphical Windows PowerShell Help
menu.

As shown in Figure 2.24, Windows PowerShell Graphical Help lets you browse and display a
wide assortment of help topics. In addition to displaying a help file, you can click on the
printer icon located at the top of the help file to print it.

As Figure 2.5 shows, you can search for help topics by typing in keywords. You can even sort
the resulting output by clicking on a heading in the Select Topic area. To view a topic, select
it from the list of search results.

Chapter 2 ¢ Interacting with the Windows PowerShell

Windows PowerShell Basics

Graphical interfaces use some basic I:unuem that are well known to most computer users. Users
thase i

raly an the r
with & unuhlui reprasanmavon of Aams d'u* can be browsad, usually with ¢ drop-down menus for

Qﬁgw&mn Frmar
= & [
Chiect Ppdine

fppends 2 - Creating & Custom PowerShel

and context menus for accassing context-spacific funchonality.

A command-line intartaca (CLT), such a5 Windows PowarShall, must usa s differant sporosch b
expoce information, bacauce it doas not have manus or graghical systeme to halp the user. You
maad b2 know command names bafore you can uss tham, ABRouch you can fype complex
mmrrmndn that ﬂ::dcuuwn.:nt L] l::: features in a Gui cnnru«mcnt. yeu must became familiar
wi &

Most CLls do not have patterns that can help the user to learn the mterface. Because CLIS were
the first aparating system shalls, many sammand namas and paramster namas wars salactad

arbitrarily. Terse oummmd namas m genarally chosen over cear ones. Athough halp systams
inta mast CLTs, they have besn ganerally designed
for companibility \w.‘h the sarfiest mmrnaﬂés. £0 the command set is 5ll shaped by cecisions made

and desg ars intag

decades ago.
Windows PowerShell wes designed to take sdvantage of & user's historic knowledge of CLIs. In

this chagter, we will talk about some basic tocls and concests that yeu can use ta learn Windows

PowerShell quickly. They include:
= Using Get-Command

* Using Crnd.axe and UNIX commands

* Using External Commands

Using Tab-Comaletian

using Gat-Halp

\3 Systems presant usars

| Windows PowerShell is designed to imorove the command-line and scrioting environment by
eliminating lang-standing problams and adding naw featurss.

Discoverability

Windows PowerShell makes & easy to discover its features. For example, to find a list of
crdlets that wiew and change Windows services, bype:

g=t-cozmand *-ssrvice

afee which emdlat , you ean learn mars TS the emdlet by
| wsing the Get_Halp crmdiet. For examile, o ‘.mnl-w Trelp MWL the Get-Servcs cmdlet, type:

get-help get-service
To fully understand the autput of that cmdlet, pipe &5 output to the Get-Member cmdiet. For
B che

| =ampla, the followi digplays i of tha object
sutput by the Get-Service crdlet.

gec-service | gec-pesbar

Consistency

Managing systems can be a complex andanvar and tools that have a consistent inderface halp
to control the inherent complexity. Unfortunately, neither command-line toals nor scriptable
COM objects have been known for their consistancy.

The consistency of Windows PowerShell is one of its pnmary assats. For example, you
leamn haw to wse the Sort-Object emdiet, you can use that knawledge to sert the output of
any edlet. You do not have to learn the different sorting routines of each emdlet.

In additon, emdlet developers do not have to design sorting features for their cmdlets.
Windows PowerShall gives tham a framawork that pravides the hasie faaturas and farces

| them to be consistent EERI many aspects of the interface, The framework sliminatas some
o the chowss that are bypically a5t to the dewaloper, but, in reburn, @ makes the

| devalopment of robust and sasy-to-usa cmdiats much simpler,

| Interactive and Scrlptmg Environments

Windews Shall is & seripting that gives you
acoess o command-line tovls and COM ub|a..n, und also enables you to use the power of
the .NET Framewark Class Libeary (FCL).

Thus anvircament improves upon the Windows Comrmand Prompt, whech provides an
[ntaraczive anvironmant with multiple command- Ilne m!s. it a\sa Imnrwel. upon wmdm
e msicbssbdet oo Gabnale oo OO

T YT Wy

| About Windows PowerShell

Windows
PowerShell help
resources are now
easily made
available with the
click of the mouse.

The Windows
PowerShell
Graphical Help file
also allows you to
perform searches
and to sort the
resulting findings.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

NAVIGATING HIERARCHICAL DATA STORES

Traditional command shells are designed to interact with and navigate the computer’s file
system. The file system is a hierarchical data store made up of drives, folders, and files. In the
cmd.exe shell, the dir command is used to display the contents of the current working direc-
tory and the cd command is used to navigate the file system’s hierarchical structure. Similar
commands are available in Windows PowerShell (the Get-ChildItem and Set-Location
cmdlets).

However, unlike traditional shells, Windows PowerShell does not limit itself to just the
computer’s file system. Instead, Windows PowerShell has the ability to access and navigate
many different hierarchical data stores, including:

e Alias commands

e Environment variables

* Windows PowerShell functions

¢ The Windows registry

e Variables

* Certificates
In order to facilitate the access of different hierarchical data stores, Windows PowerShell
implements a provider model that exposes different hierarchical data stores in a manner that

simulates a file system. As such, you can not only access these different data stores, but you
can do so using familiar commands (e.g., cd or Set-Location and dir or Get-ChildItem).

You can view a listing of all the providers supported by Windows PowerShell by executing
the Get-PSProvider cmdlet, as demonstrated here.

PS C:\MyScripts> Get-PSProvider

Name Capabilities Drives

Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, D, J, K...}
Function ShouldProcess {Function}
Registry ShouldProcess, Transact... {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

PS C:\MyScripts>

Chapter 2 ¢ Interacting with the Windows PowerShell

As this cmdlet shows, each provider is represented as a drive. Alternatively, you can use the
Get-PSDrive cmdlet to display a listing of available drives and the provider with which they
are associated, as demonstrated here:

PS C:\MyScripts> Get-PSDrive

Name Provider Root CurrentlLocation
Alias Alias

C FileSystem C:\ MyScripts
cert Certificate \

D FileSystem D:\

E FileSystem E:\

Env Environment

F FileSystem Fi\

Function Function

G FileSystem G:\

H FileSystem H:\

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem I:\

J FileSystem J:\

K FileSystem K:\

M FileSystem M:\

Variable Variable

PS C:\MyScripts>

You can access any of the drives exposed by Windows PowerShell providers using the
Set-Location cmdlet. For example to switch from the default C: drive to the logical Env drive,
you would type

PS C:\> Set-Location Env:
PS Env:\>

The Env drive provides access to system environmental variables maintained
by the Windows operating system.

Once you have targeted a given drive, you can display its contents using the Get-ChildItem
cmdlet, just as if it were a physical disk drive, as demonstrated here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

PS C:\MyScripts> Set-Location Env:

PS Env:\> Get-ChildItem

Name

Path

TEMP
ProgramData
PATHEXT
USERDOMAIN

PROCESSOR_ARCHITECTURE

SystemDrive
RoxioCentral
APPDATA

windir
LOCALAPPDATA
SESSTONNAME
RUBYOPT

TMP

USERPROFILE
ProgramFiles
FP_NO_HOST_CHECK
HOMEPATH
COMPUTERNAME
CLASSPATH
PROCESSOR_LEVEL
NUMBER_OF_PROCESSORS
PROCESSOR_IDENTIFIER
USERNAME

PCBRAND

ComSpec
LOGONSERVER
OnlineServices
CommonProgramFiles
SystemRoot

PHPRC
PROCESSOR_REVISION
QTJAVA

C:\Program Files\PHP\;c:\ruby\bin;C:\Win...

C:\Users\Jerry\AppData\Local\Temp
C:\ProgramData

.COM; .EXE; .BAT;.CMD; .VBS;.VBE;.JS;.JSE;. ...

HP-PC
x86
C:

c:\Program Files\Common Files\Roxio Shar...

C:\Users\derry\AppData\Roaming
C:\Windows
C:\Users\derry\AppData\Local
Console

-rubygems
C:\Users\Jerry\AppData\Local\Temp
C:\Users\derry

C:\Program Files

NO

\Users\dJerry

HP-PC

.3C:\Program Files\Jdava\jrel.6.0_05\1ib\...

15
2

x86 Family 15 Model 107 Stepping 1, Auth...

Jerry

Pavilion
C:\Windows\system32\cmd.exe
\\HP-PC

Online Services

C:\Program Files\Common Files
C:\Windows

C:\Program Files\PHP\

6b01

C:\Program Files\Java\jrel.6.0_05\11ib\ex...

Chapter 2 - Interacting with the Windows PowerShell

PLATFORM HPD
ALLUSERSPROFILE C:\ProgramData
PUBLIC C:\Users\Public
0S Windows_NT
HOMEDRIVE C:

PS Env:\>

Because of the manner in which Windows PowerShell abstracts different hierarchical data
structures, you can access parts of the Windows registry just as easily as a physical disk drive
or the local Env drive. The Windows registry is organized into a series of high level keys.
Windows PowerShell provides access to two of these keys, as outlined in Table 2.2.

" TABLE 2.2 ReGIsSTRY KEYs AccEeEssiBLE BY WINDOWS POWERSHELL

Registry Key Abbreviation Description
HKEY_LOCAL_MACHINE HKLM Stores information about system configuration
settings that affect all users of the computer.
HKEY_CURRENT_USER HKCU Stores information about the currently logged on
user’s configuration settings.
" _J

To access either of the two registry keys listed in Table 2.2, you must reference its abbreviated
name, as demonstrated here:

PS HKCU:\> Set-Location HKCU:
PS HKCU:\> Get-ChildItem

Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property

2 0 AppEvents {}

3 38 Console {ColorTable00, ColorTable0Ol, Col...
13 0 Control Panel {1

0 2 Environment {TEMP, TMP}

4 0 EUDC {1

1 6 Identities {Identity Ordinal, Migrated7, La...
3 0 Keyboard Layout {}

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

0 0
4 0
0 1
68 0
1 0
0 1
1 0
0 1
1 8
PS HKCU

Network {1

Printers {1

Seagate {(default)}

Software {1

System {}

uLc {(default)}

VBGames {}

SessionInformation {ProgramCount}

Volatile Environment {LOGONSERVER, USERDOMAIN, USERNA...
\>

In this example, the HKEY_CURRENT_USER key has been accessed and displayed.

You will learn how to programmatically interact with the Windows registry
later, including how to store and retrieve data in Chapter 9, “Basic System
Administration.”

BAck TO THE STORY OF THE THREE AMIGOS

Okay, it is time to turn your attention back to the chapter’s main game project, The Story of
the Three Amigos. The development of this game will demonstrate how to create a script that
can interact with the player by displaying messages, retrieving command-line input, and
applying simple programming logic to control the operation of the script.

Going forward, | plan to develop a script template file that will be used as the
basis for all new Windows PowerShell scripts. You will find a copy of this script
template, named PSTemplate.ps|, located on the book’s companion website
(www.courseptr.com/downloads). The purpose of this script template is to pro-
vide additional documentation for each new script file. For now, this template,
shownbelow, will provideaplacetodocumentthescript’sname, version,author,
date, and description. Later, I'll modify the template again when covering func-
tions in Chapter 7, “Organizing Scripts Using Functions.”

KRR Ak hk ARk A Ak hkh kA hkhh kA hk kA khhhkhkhkkhhhhkhkhhkhkhhhkhhhkhhhkhkhhkkhrhrkhkhkkkhkrkkkhxxkxx

k

1

Script Name:
Version:

Author:

www.courseptr.com/downloads

Chapter 2 ¢ Interacting with the Windows PowerShell

Date:

#

Description:
#

#

1

kAR hkhkkhkhkkkhkhhkhkhkhkhkhkhhhkhkhkhhkhkhhhkhhhkhkhhkhhhkhkhhhhhhhhhhhkhhhkhrhkhkkhhrhkhkrxkkhrxkkx

*k*k

Note that this template consists of a series of comment lines. Comments are
text embedded within script files that help to document the scripts, but which
are otherwise ignored when the script is executed. In Windows PowerShell, the
#f character serves as acomment indicator. Anything that follows a # characterin
a script is considered a comment. Comments can be placed on their own line or
placed at the end of a script statement.

Before writing the first line of code, it is important to spend a little time planning out the
script’s overall design. The Story of the Three Amigos will begin by displaying a title page.
Next, the user is informed that her participation is required to tell the story and then four
questions are presented. Each answer that is provided must be saved. The text that makes up
the story must then be laid out. In addition, the variables containing the user’s answers must
be strategically placed at specific locations within the story text. Lastly, closing credits and
copyright information should be displayed.

As you can see, the overall logical flow of The Story of the Three Amigos is fairly simple. To
set it up, we will complete its development in eight steps.

. Create a new script file using the PowerShell template and add opening statements.
. Declare variables used throughout the script file.

. Display the introduction screen.

. Display game instructions.

. Collect first player input.

. Collect additional player input.

. Display the opening portion of the story.

. Display the rest of the story.

0N Ul W W N

Creating a New Script

The first step in creating The Story of the Three Amigos is to open the PowerShell template
file and save it as a new file named ThreeAmigos.ps1. Next, modify the comment statements
at the top of the script file, as shown here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

KRR AR A ARk A A kA kA Ak Ak Ak Ak kA kA hk kA hkhkk kA kA hkhkhkhhkkhkhhhkhhhkhkhkkhkhhkkhkrkkkhhhkhkhkkkkkxkx

#

Script Name: ThreeAmigos.psl (The Story of the Three Amigos)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 5, 2008

1

Description: This PowerShell script is a mad-1ib styled game that tells
a humorous story using input provided by the player.

1

khkkhkkhkkkhkhkhhkhkhhkhkhhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhhhhhhhiik

Next, let’s add the script’s first statement.

#Clear the Windows command console screen
Clear-Host

As you can see, the script begins by executing the Clear-Host cmdlet to clear the display area
of the Windows command console. To make things perfectly clear, I have added a comment
just above the Clear-Host command, explaining what the command will do when executed.

Declaring Script Variables

The next step in the development of The Story of the Three Amigos is to declare all of the
variables that will be used to store the input provided by the user when responding to each
of the game’s four questions. This is accomplished by appending the following statements to
the end of your PowerShell script file.

#Define the variables used in this script to collect player input

$animal = "" {ffStores the name of an animal supplied by the player
$vehicle = "" {Stores the name of a vehicle supplied by the player
$store = "" fiStores the name of a store supplied by the player

$dessert = "" {fStores the name of a dessert supplied by the player

Note that [have assigned descriptive names to each variable that help to provide an indication
of the type of data that they will store.

Displaying the Introduction
The next step in assembling your new Windows PowerShell script is to append the following
statements to the end of the script file.

Chapter 2 ¢ Interacting with the Windows PowerShell

fDisplay the game's opening screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

" THE STORY"

" OF THE THREE AMIGOS"

By Jerry Lee Ford, Jr."

" Press Enter to continue."

f#Pause script execution and wait for the player to press the Enter key

Read-Host

As you can see, these statements consist of a number of Write-Host cmdlet statements that
display the story’s opening screen. Note the placement of the Read-Host cmdlet. When exe-
cuted, it will pause the script and wait until the user presses the Enter key.

Providing Player Instructions
Now let’s add the statements that provide the user with instructions for interacting with the
story by appending the following statements to the end of the script file.

f#fC1ear the Windows command console screen

Clear-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#Provide the player with instructions
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " This is an interactive mad-1ib styled story. Before it can be"
Write-Host

Write-Host " told, you must answer a few questions.”
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue.”

f#fPause script execution and wait for the player to press the Enter key
Read-Host

As you can see, these first statements will clear the Windows command console screen. Then
a series of Write-Host cmdlets are executed in order to display the text containing the game’s
instruction. Lastly, the Read-Host cmdlet pauses the script to give the user a chance to read
the instructions before continuing.

Prompting the Player for Input

Now itis time to start collecting user input. The code statements required to display the story’s
first question and store the user’s answer are shown next and should be appended to the end
of the script file.

Chapter 2 ¢ Interacting with the Windows PowerShell @

ffAsk the player the first question
while ($animal -eq ""){

Clear-Host {Clear the Windows command console screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

$animal = read-host " Enter the name of a scary animal "

}

Here, a while loop has been set up to control interaction with the user. Its main purpose is to
prevent the user from simply pressing the Enter key without first typing in something. The
user’s answer is assigned to a variable named $animal.

Don’t worry just yet about the example workings of variables and while Loops.
These are covered in detail in Chapter 4, “Working with Variables, Arrays, and
Hashes,” and Chapter 5, “Implementing Conditional Logic.”

Collecting Additional Inputs
Next, add the following code statements to the end of the script file. The statements are
responsible for collecting the rest of the input required to tell the story.

f#Ask the player the second question
while ($vehicle -eq ""){

Clear-Host {Clear the Windows command console screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$vehicle = read-host " Enter the name of a transportation vehicle

#Ask the player the third question
while ($store -eq ""){

Clear-Host {Clear the Windows command console screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

$store = read-host " Enter the name of your favorite store

#Ask the player the fourth question
while ($dessert -eq ""){

Clear-Host #Clear the Windows command console screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

$dessert = read-host " Enter the name of your favorite dessert "

Chapter 2 ¢ Interacting with the Windows PowerShell @

As you can see, these statements are organized into three while loops, each of which is little
more than a simple variation of the code statements used to prompt the user to provide an
answer to the story’s first question.

Displaying the Story’s Opening
Now that the input needed to tell the story has been collected, it is time to begin displaying
the text that makes up the story. For starters, add the following statements to the end of the

script file.

f#fC1ear the Windows command console screen

Clear-Host

#Provide the

player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Once upon a time there were three very special children”
Write-Host " named Alexander, William, and Molly. Alexander was the oldest"
Write-Host " and was known to be brave and strong. Molly, the youngest,"
Write-Host " was just seven years old, yet she possessed an extraordinary"
Write-Host " sense of awareness that even the wisest sage would"
Write-Host " admire and respect. William, the middle child, was both brave"
Write-Host " and wise many times beyond his years. They lived together at"
Write-Host " the top of a hill, just outside the outskirts of town, where"
Write-Host " they faithfully watched over the townsfolk. Always together"
Write-Host " and always looking out for each other and the people in the"
Write-Host " town, they were known by everyone as The Three Amigos."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#fPause script execution and wait for the player to press the Enter key
Read-Host

These statements clear the screen, display some story text, and then pause script execution
until the user presses the Enter key.

Displaying the Rest of the Story
The code statements that display the remainder of the story are shown next and should be
appended to the end of the script file.

#Clear the Windows command console screen
Clear-Host

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " One day, which started out no different than any other day, a
Write-Host " great roar was heard from the center of the town. Women and"
Write-Host " small children could be seen screaming and running in panic."
Write-Host " The Three Amigos climbed to the top of their watch tower and"
Write-Host " began scanning the town streets for the source of the noise"
Write-Host " and panic. Alexander was the first to find the problem,"”
Write-Host " spotting a gigantic $animal moving quickly towards the"
Write-Host " mayor's office. Just ahead of the $animal stood the town's"
Write-Host " men, attempting to make a desperate stand.”

Write-Host " “"Hurry, we must go!™" shouted Molly. “"The town needs The"
Write-Host " Three Amigos!™" In an instant Alexander, William, and Molly"
Write-Host " jumped into an old $vehicle, scarred and worn by years"
Write-Host " of faithful service, and hurriedly raced into town."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue.”

Chapter 2 ¢ Interacting with the Windows PowerShell @

ffPause script execution and wait for the player to press the Enter key

Read-Host

f#fC1ear the Windows command console screen

Clear-Host

fProvide the

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

player with instructions

Within minutes The Three Amigos found themselves standing in"
the center of Main street. The town was quiet and seemed"
almost deserted except for the old $store, where the citizens"”
had retreated once their Tast stand had failed. The $animal"”
was standing in front of the $store, preparing to"

break in and ki1l the good citizens of the town."

“"What do we do? " said Alexander. William Tooked around and"
saw a pile of $dessert stacked up against the town"
barbershop's storefront. "Follow me," yelled William,"

heading straight for the pile of $dessert. Alexander"

and Molly instantly knew what to do, each grabbing a $dessert”
and hurling pieces of $dessert at the $animal. Unable to"

deal with the power of the attack launched by The Three"
Amigos, the $animal fled the town, never to be seen or heard"
of again."

Press Enter to continue."

f#Pause script execution and wait for the player to press the Enter key

Read-Host

#CTear the Windows command console screen

Clear-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#Provide the player with instructions

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " The townsfolk ran out of the $store and began cheering for"
Write-Host " their heroes. Once again The Three Amigos had saved the day."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " THE END"
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."”

#fPause script execution and wait for the player to press the Enter key
Read-Host

#Clear the Windows command console screen
Clear-Host

Take note of the variable names that are embedded inside the Write-Host statements that
displayed the story text. When executed, each of these variables will automatically be replaced
with the text string input provided by the user earlier in the script file. To help make the
locations of these variables stand out, I have made them bold.

Chapter 2 ¢ Interacting with the Windows PowerShell @

SUMMARY

This chapter has covered a number of different PowerShell topics designed to help you deve-
lop a solid understanding of how to interact with the PowerShell command line. You learned
how to configure the Windows command console in order to customize your working envi-
ronment. You learned how to configure the Windows command shell to automatically use
your Windows PowerShell script folder as your default working directory. You also learned
how to work with tab completion and to use Windows PowerShell to navigate and access
different types of system resources, including the Windows registry and environment
variables.

Now, before you move on to Chapter 3, “Object-Based Scripting with .NET,” I suggest you set
aside a few extra minutes to work on and improve The Story of the Three Amigos by imple-
menting the following challenges.

CHALLENGES

I. Forstarters, consider promptingthe userto provide additional
inputs and use her answers to further increase the unpredict-
ability of the story.

2. Considerrewriting the story’s ending to make it more exciting
or to give it an unexpected and humorous twist.

3. Lastly, don’t forget to modify the author credits by using your
own name. In addition, you might want to add some infor-
mation such as your website’s URL or your e-mail address.

This page intentionally left blank

(cHAPTER)

OBJECT-BASED SCRIPTING
wiTH .NET

indows PowerShell is tightly integrated with Microsoft’s .NET Framework,

which provides much of the supporting environment required to develop

Windows applications and scripts. In this chapter, you will learn how
Windows PowerShell leverages .NET resources. You learn about the .NET class
library and common runtime language. You will learn how to execute cmdlets and
to use cmdlets to access object properties and methods. You will also review cmdlet
aliases and learn how to create your own custom aliases. On top of all this, you
will learn how to programmatically customize the Windows PowerShell and to
develop the PowerShell Fortune Teller game.

Specifically, you will learn:

e How to create a profile.ps1 script file and use it to customize Windows
PowerShell

* More background information regarding Windows PowerShell’s integration
with NET

* How to use object pipelines to pass structured data between cmdlets

e How to create custom aliases

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE POWERSHELL FORTUNE TELLER GAME

This chapter’s game project is the PowerShell Fortune Teller game. This game simulates a
session with avirtual fortune teller who listens to player questions and then provides answers.
The answers provided vary based on the fortune teller’s mood, which changes based on the
time of day that questions are asked. All questions are expected to be posed in such a way
that yes/no answers can be applied.

When first started, the game displays the welcome screen shown in Figure 3.1.

| &2 Windlows Pawershell _lol x|

WELCORME T O THE HWINDOWS
FOHEKSHELL FORTUNE TELLER

By Jerry Lee Fowrd, Jp.

The PowerShell
Fortune Teller
game’s welcome
screen.

Fress Enter to continue.

Pressing Enter dismisses the welcome screen. Next, instructions are displayed that provide
the player with guidance regarding the proper way to formulate questions, as shown in
Figure 3.2.

25 Windows PowerShell — o] =|

-
The lortune teller is a very busy and inpatient mystic. Make j

your guestions brief and simple and only expect to receive

Yez ~ Ho ztyled answers.

Players are given
guidance on how
to formulate Press Enter to continue. __J
questions.

Chapter 3 ¢ Object-Based Scripting with .NET

Next, the player is prompted to ask her question, as shown in Figure 3.3.

25 Windows PowerShell —lo] =|

-
What is your guestion? = :I

Players are
expected to ask
questions that can
&l be addressed with
yes/no answers.

In response, the game randomly selects 1 of 8 possible answers and displays it, as demon-
strated in Figure 3.4.

25 Windows PowerShell _[of =]

-
What is your guestion? z Will I be rich? :I

Grrrr. The answer is no!

The fortune teller
Press Enter to continue. _] responds with a
variety of answers.

The player is then prompted to either press Enter to ask the fortune teller another question
or type Q to end the game, as shown in Figure 3.5.

The game ends by displaying a message suggesting that the player return and play again, as
shown in Figure 3.6.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

25 Windows PowerShell — o] =|

-
I'ress Enter to ask another guestion or type § to guit.:z j

Players may ask
the fortune teller
as many questions &

as they want.

23 Windows PowerShell _ (ol x]
-
Very well then. PMlease return again to get all your guestions
answered.
The game ends
after inviting the
player to return
and ask more Press Enter to continue. __J

questions.

ApDITIONAL POWERSHELL CUSTOMIZATION TECHNIQUES

Before we jump deep into a review of the .NET Framework and how Windows PowerShell uses
cmdlets to access .NET resources, let’s spend a few more minutes taking a look at one addi-
tional way in which you can customize Windows PowerShell.

Asyou learned in Chapter 2, “Interacting with the Windows PowerShell Command Line,” you
can customize your Windows PowerShell working environment by making changes to a
PowerShell shortcut. In addition you learned that you can also programmatically configure
your PowerShell environment by creating a PowerShell script file named profile.ps1 and stor-
ing it in your profile folder (as specified by the value of the $profile variable). When you do
this, the script you place in the profile.ps1 file is automatically executed whenever you start
a new Windows PowerShell session. Other users of Windows PowerShell remain unaffected.
However, if you instead move the profile.ps1 file into the C:\Windows\System32\Windows

Chapter 3 ¢ Object-Based Scripting with .NET

PowerShell\v1.0 folder, it will automatically be run for every user of the computer each time
a new Windows PowerShell session is started.

By developing a profile.ps1 script, computer administrators can manage large numbers
of computers by remotely deploying the script file to any number of computers, thus elimi-
nating the need to visit and configure individual computers. For example, you might
create a PowerShell script file similar to the following example and then distribute it to the
C:\Windows\system32\WindowsPowerShell\v1.0 folder on all corporate computers to help
ensure awareness of corporate computer policy.

khkkhkkhkkkhkkhkhkhkhkhkhkhhhkhhhkhkhkhhkhkhkhkhhhkhhhhkhhkhkhhhkhhhkhhhhhhhkxk

1
Script Name: Profile.psl (PowerShell Profile configuration Scripts)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 10, 2008

#

Description: This PowerShell script contains commands that customize
the Windows PowerShell execution environment.

#

kkkkkkkhkkhkkkkkhkhkkkhkkhkhkkhkkhkkkhhkhkkhkhkhhkhkhkhkhkhkhhhkhhhhkhkhkhkhkhkhhkhkhhkhkhkhhhkhkhkrkkhkhkrkhkhkkrkhkhkkxkkx

#Create a custom alias command
Set-Alias ds Write-Host

#Clear the Windows command console screen
Clear-Host

#Display custom greeting

ds

ds "This computer and network are private. By using this computer you"
ds "agree to all terms outlined in the company's security policy."

ds "Failure to comply with these policies may result in criminal"

ds "prosecution."

ds

When executed, this script creates a custom alias named ds, which creates a shortcut to the
Write-Host cmdlet. You will learn more about aliases and how to create them later in this

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

chapter. Next, the screen is cleared and then, using the newly created alias, a message is
displayed regarding the company’s security policy. Figure 3.7 demonstrates what the user
will see each time a new Windows PowerShell session is started.

2= Windows PowerShell (=1 E3|
his computer and network are private. Dy using this computer you

gree to all terms outlined in the company’s securitu policy.

ailure to comply with these policies may result in criminal

prosecution.

P8 C:\MuScripts> _

Ensuring user
awareness of
security policy at
Windows
PowerShell
startup.

THE MicrosoFT .NET FRAMEWORK

The .NET Framework is a core component of modern Windows PowerShell scripting. Version 2
of the .NET Framework is a requirement for both Windows PowerShell 1.0 and 2.0. It is there-
fore important that PowerShell programmers have a solid understanding of the .NET Frame-
work’s major components and the services it provides. For starters, .NET is a Microsoft
framework designed to support desktop, network, and Internet-based applications and
scripts. .NET also supports the development of mobile applications for devices such as PDAs.

l“!!!;m
\gu s

A framework is a collection of resources that facilitates the development of
scripts and programs. The purpose of a framework is to alleviate much of the
complexity involved in developing new programs and scripts by providing
programmers access to a predefined collection of services and resources, al-
lowing programmers to instead focus on the higher level logic required to solve
a specific problem.

The .NET Framework is designed to support the development of applications and scripts in
conjunction with any .NET-compliant application or script development programming lan-
guage. In fact, Microsoft has generated an entire suite of application programming languages
built around the .NET Framework. These languages include Visual Basic, C++, C#, and J#.
Microsoft is promoting the .NET Framework as a key component in all its new programming
languages. It should be no surprise, therefore that Microsoft decided to integrate support

Chapter 3 ¢ Object-Based Scripting with .NET

for .NET Framework into Windows PowerShell, giving it and its scripting language instant
access to an enormous range of resources and commands.

Key .NET Framework Components

The .NET Framework acts as an interface between Windows PowerShell and the operating
system. .NET is responsible for translating script code into a format that can be executed on
your computer. Figure 3.8 shows the role the .NET Framework plays in supporting application
and script development.

The .NET
Framework
provides Windows
PowerShell
scripts with access
to system
resources and
commands for
accessing those
resources.

The .NET Framework consists of two key components, as outlined here.

e NET Framework class library

* CLR (common language runtime)

Don’t be too worried if there are elements in Figure 3.8 that you don’t understand. I will cover
each in detail in the sections that follow.

The .NET Class Library

Traditional command shells have a very limited recognition of data, typically recognizing
only strings and numbers. However, Windows PowerShell enforces the use of tightly struc-
tured data. As a result, Windows PowerShell can work with many different types of data
including, strings, dates, integers, floating-point numbers, Boolean data, and so on.

Structured data is also a key feature of the .NET Framework. With .NET, structured data is
grouped into different collections to define complex structured classes. Classes are then used
as a template for creating objects, which represent things that Windows PowerShell can
access and manipulate. An object is a self-contained resource that contains information about
itself as well as the code required to access and manipulate it. For example, a file, folder, and
disk drive are all treated as objects by Windows PowerShell.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Objects have certain attributes or properties that define a particular characteristic of the object.
For example, folders have names. Objects also provide access to predefined collections of code,
referred to as methods, which can be executed in order to interact with and control the object.
For example, a file object provides access to methods that can be used to perform all sorts of
actions on the file, including opening, closing, and deleting it.

The Common Language Runtime

The common language runtime or CLR is responsible for converting Windows PowerShell scripts
into an executable format that your computer can understand and run. The CLR also provides
Windows PowerShell with other services, including:

e Compiling
e Security
* Memory Management

* Exception Handling

Accessing .NET Framework Resources

Windows PowerShell provides access to .NET Framework resources through cmdlets. Cmdlets
provide access to .NET resources while at the same time hiding much of the complexity
involved. As a PowerShell programmer, you do not have to worry about specific .NET classes
or their properties and methods. All that you have to do is know which cmdlets to use in order
to get at the type of resources required by your scripts. To see what I mean, consider the
following series of examples.

In this first example, let’s execute the Get-ChildItem cmdlet. The Get-ChildItem cmdlet retri-
eves a listing of objects representing each file and subfolder stored in the current working
directory. The .NET Framework stores a lot of information, or properties, about file objects.
However, by default, Windows PowerShell only displays a few of these properties, as demon-
strated here:

PS C:\MyScripts> Get-ChildItem

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name
-a--- 9/26/2006 6:14 PM 4661 FortuneTeller.psl
-a--- 10/3/2008 11:51 AM 1077 KnockKnock.psl

-a--- 10/3/2008 11:51 AM 832 Profile.psl

Chapter 3 ¢ Object-Based Scripting with .NET

-a--- 10/3/2008 11:51 AM 7701 SeinfeldTrivia.psl
-a--- 9/23/2006 2:22 PM 7598 ThreeAmigos.psl

PS C:\MyScripts>

Here, the Mode, LastWriteTime, Length, and Name properties for each file object are displayed.
Next, let’s focus on a specific file, as shown here:

PS C:\MyScripts> Get-ChildItem Profile.psl
Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

-a--- 10/3/2008 11:51 AM 832 Profile.psl

PS C:\MyScripts>

In this example, profile.psl was passed as an argument to the Get-ChildItem cmdlet. As a
result, only property information for that file object is played. Now that we are focused on
the properties for a specific object, let’s poke a little deeper and see what other types of prop-
erty information .NET keeps for this object. The following example takes the output generated
by the Get-ChildItem cmdlet and passes it to the Get-Member cmdlet. The Get-Member cmdlet is
then passed an argument named -MemberType. This argument can take on different values. In
this example, a value of Property is specified. The end result is the display of properties that
the .NET Framework has for this particular file.

Remember that Windows PowerShell views most everything as an object, and
objects have attributes that describe features of the object. The attributes are
commonly referred to as object properties. As the preceding example demon-
strated, most cmdlets allow you to pass data for processing in the form of
arguments. In addition, most cmdlets return object data as command output. In
the nextexample, the object dataoutputgenerated by theGet-ChildItemcmdlet
is passed as an argument to the Get-Member cmdlet for further processing.

PS C:\MyScripts> Get-ChildItem Profile.psl | Get-Member -MemberType
Property

TypeName: System.IO.Filelnfo

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Name MemberType Definition

Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

IsReadOnly Property System.Boolean IsReadOnly {get;set;}

LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}

LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}

Name Property System.String Name {get;}

PS C:\MyScripts>

As you can see, the NET Framework stores a lot of properties that are not automatically
displayed by the Get-Childitem cmdlet. However, this information is readily available to you
as the next example demonstrates.

PS C:\MyScripts> Get-ChildItem Profile.psl | Select-Object name,
extension, directory

Name Extension Directory

Profile.psl .psl C:\MyScripts

PS C:\MyScripts>

In this example, the Get-ChildItem cmdlet is once again used to retrieve information about
the profile.pls file. However, this time the Select-0bject cmdlet is used to retrieve and dis-
play different object properties, specifically the Name, Extension, and Directory properties.
Note that the names of the specific properties to be retrieved were passed as a comma-
separated list of arguments.

Chapter 3 ¢ Object-Based Scripting with .NET

The Select-0bject cmdlet provides the ability to determine which objects being
passed through the pipeline are kept or discarded. In the previous example, all
objects returned by the Get-ChildItem cmdlet are discarded except for
profile.psl.

In short, unlike traditional command shells that only pass a limited amount of data back in
a simple text format, Windows PowerShell cmdlets provide you with direct access to all kinds
of behind-the-scenes object information.

As previously stated, .NET Framework classes define all of the properties and methods asso-
ciated with each object associated with a particular class. As such, you can also retrieve a
listing of all the methods associated with a given object, as demonstrated next.

PS C:\MyScripts> Get-ChildItem Profile.psl | Get-Member -MemberType Method

TypeName: System.IO.Filelnfo

Name MemberType Definition

AppendText Method System.I0.StreamWriter AppendText()
CopyTo Method System.I10.FileInfo CopyTo(String d...
Create Method System.I0.FileStream Create()
CreateObjRef Method System.Runtime.Remoting.0bjRef Cre...
CreateText Method System.I10.StreamWriter CreateText()
Decrypt Method System.Void Decrypt()

Delete Method System.Void Delete()

Encrypt Method System.Void Encrypt()

Equals Method System.Boolean Equals(Object obj)
GetAccessControl Method System.Security.AccessControl.File...
GetHashCode Method System.Int32 GetHashCode()
GetLifetimeService Method System.0Object GetLifetimeService()
GetObjectData Method System.Void GetObjectData(Serializ...
GetType Method System.Type GetType()
InitializelLifetimeService Method System.0Object InitializelLifetimeSe...
MoveTo Method System.Void MoveTo(String destFile...
Open Method System.I0.FileStream Open(FileMode...
OpenRead Method System.I0.FileStream OpenRead()
OpenText Method System.I0.StreamReader OpenText()

OpenlWrite Method System.I0.FileStream OpenWrite()

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Refresh Method System.Void Refresh()

Replace Method System.I0.Filelnfo Replace(String ...
SetAccessControl Method System.Void SetAccessControl(FileS...
ToString Method System.String ToString()

PS C:\MyScripts>

As you can see, in this example the value passed as the -MemberType argument to the Select-
Object cmdlet was changed from property to Method.

If all this talk about the .NET Framework, classes, objects, properties, and methods seems
confusing or overwhelming, don’t be alarmed. It takes time to fully comprehend all this
new technology. However, the good news is that as a Windows PowerShell programmer,
you needn’t be directly focused on .NET. Instead, all you have to do is become comfortable
with working with cmdlets and let the .NET Framework worry about all the underlying
complexities.

You can learn more about the .NET Framework by visiting www.microsoft.com/
net.

EXEcUTING CMDLETS

Cmdlets are a key Windows PowerShell resource that provides access to .NET Framework
resources. Windows PowerShell cmdlets provide access to a host of commands, each of which
is designed to perform a singular task. Individually, cmdlets provide access to specific
resources and commands. However, the real power provided by cmdlets comes when they are
used together as building blocks to formulate complex tasks.

You will learn more about how Windows PowerShell lets you combine cmdlets into complex
statements in the next section. However, in order to work with the Windows PowerShell
and to write PowerShell scripts, it helps to know a little something about each of the cmdlets
that PowerShell makes available to you. To help you out, I have provided a complete list of
PowerShell cmdlets in Table 3.1, along with a brief explanation of what each cmdlet does and
what version of Widows PowerShell supports them.

www.microsoft.com/net
www.microsoft.com/net

Cmdlet

Add-Content
Add-History
Add-Member

Add-Module
Add-PSSnapln
Add-Type
Clear-Content
Clear-History
Clear-Item
Clear-ItemProperty
Clear-Variable
Compare-Object

Complete-PSTransaction
ConvertFrom-Csv

ConvertFrom-SecureString

ConvertFrom-StringData
Convert-Path

ConvertTo-Csv
ConvertTo-Html
ConvertTo-SecureString

ConvertTo-Xm1l
Copy-Item

Copy-ItemProperty

Disable-PSBreakpoint
EnabTe-PSBreakpoint
Export-Alias
Export-CTixml

TaBLE 3.1

1.0

Yes
Yes
Yes

Yes

Chapter 3 ¢ Object-Based Scripting with .NET

WiNnDOows POWERSHELL CMDLETS

2.0

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes

Yes
Yes
Yes
Yes

Description
Adds to the content(s) of the specified item(s).
Adds entries to the session history.

Adds a user-defined custom member to an
object.

Allows you to load a script or a DLL as a module.
Adds one or more PSSnapIn(s) (containing
additional collections of providers or cmdlets)
to the current Ps console.

Allows you to load a DLL or assembly instead of
using the .NET Framework to access resources.
Removes the content from an item or file while
leaving the file intact.

Clears out the list of commands that have been
executed during the current session.

Sets the item(s) at the specified location to the
"clear" value specified by the provider.
Removes the property value from a property.
Removes the value from a variable.

Compares the properties of objects.

Commits or completes a transaction.

Exports a comma-separated value.

Exports a secure string to a safe, persistent
format.

Converts a string containing “name-value” pair
to an associative array.

Converts the path of the item given from a Ps
path to a provider path.

Converts output to a comma-separated value.
Converts the input to an HTML table.

Creates a secure string from a normal string
created by Export-SecureString.

Converts outputinto an XML format.

Calls a provider to copy an item from one
location to another within a namespace.

Copies a property between locations or
namespaces.

Turns off breakpoints.

Turns on or re-enables disabled breakpoints.
Exports an alias list to a file.

Produces a clixml representation of a PS object
or objects.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

é Cmdlet
Export-Console

Export-Csv
Export-ModuleMember
ForEach-Object
Format-Custom
Format-List
Format-Table
Format-Wide

Get-Acl

Get-Alias

Get-AuthenticodeSignature

Get-ChildItem

Get-Command
Get-Content

Get-Credential
Get-Culture
Get-Date
Get-Event

Get-Eventlog
Get-ExecutionPolicy

Get-Help
Get-History
Get-Host
Get-Item

Get-ItemProperty
Get-Location
Get-Member

1.0

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes

2.0

Yes

Yes
Yes
Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes

Description

Exports the changes made to the current
console. This action overwrites any existing
console file.

Exports CSV strings from input.

Exports a function or cmdlet from a module.
Applies script blocks to each object in the
pipeline.

Formats command output as defined in an
alternate custom view.

Formats objects as a list of their properties
displayed vertically.

Formats the output as a table.

Formats objects as a table of their properties.
Gets the access control list (ACL) associated
with a file or object.

Returns alias names for cmdlets.

Gets the signature object associated with a file.

Retrieves the child items of the specified
Llocation(s) in a drive.

Retrieves basic information about a command.
The Get-Content command gets the content
from the item at the specified location.

Gets a credential object based on a password.
Gets the culture information.

Gets current date and time.

Retrieves events from event logs and event
tracing logs.

Gets event log data for the machine.

Gets the effective execution policy for the
current shell.

Opens the help files.

Gets a listing of the session history.

Gets host information.

Returns an object that represents anitemin a
namespace.

Retrieves the properties of an object.
Displays the current location.

Enumerates the properties, methods, typeinfo,
and property sets of the objects given to it.

~

Chapter 3 ¢ Object-Based Scripting with .NET

-

é Cmdlet 1.0 2.0 Description A

Get-Module No Yes Retrieves one or more loaded modules,
returning a PSModulelnfo object.

Get-PfxCertificate Yes Yes Getsthe pfx certificate information.

Get-Process Yes Yes Gets a list of processes on a machine.

Get-PSBreakpoint No Yes Retrieves a listing of all the currently set
breakpoints.

Get-PSCallStack No Yes Retrieves and displays the current call stack.

Get-PSDrive Yes Yes Gets the driveinformation (DrivelInfo)forthe
specified Ps drive.

Get-PSEvent No Yes Subscribes to a specified type of event.

Get-PSEventSubscriber No Yes Displays a list of all event subscripts for the
current working session.

Get-PSJob No Yes Retrieves background jobs.

Get-PSProvider Yes Yes Getsinformation for the specified provider.

Get-PSSnapin Yes Yes Listsregistered PSSnapins.

Get-Random No Yes Generates arandom number.

Get-Runspace No Yes Retrieves runspaces created in the current
working session.

Get-Service Yes Yes Getsalistof services.

Get-TraceSource Yes Yes Lists properties for given trace sources.

Get-UICulture Yes Yes Getsthe Ul culture information.

Get-Unique Yes Yes Getsthe uniqueitemsinasorted list.

Get-Variable Yes Yes GetsaPs variable.

Get-WmiObject Yes Yes ProducesaWMlobjectorthe list of WMl classes
available on the system.

Group-Object Yes Yes Groupsthe objectsthat contain the same values
for a common property.

Import-Alias Yes Yes Importsan alias list from a file.

Import-CTixml Yes Yes Importsaclixml fileandrebuildsthe Ps object.

Import-Csv Yes Yes Takes values froma CSV list and sends objects
down the pipeline.

Import-LocalizedData No Yes Imports language-specific information into
scripts and functions based on the Ul culture
setting.

Invoke-Command No Yes Executes alocal or remote command.

Invoke-Expression Yes Yes Executesastringas an expression.

Invoke-History Yes Yes Invokes apreviously executed command.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

é Cmdlet 1.0 2.0 Description A
Invoke-Item Yes Yes Invokes an executable or opens a file.
Invoke-WmiMethod No Yes Executes WMl methods.

Join-Path Yes Yes Combines path elementsinto a single path.

Measure-Command Yes Yes Tracks the running time for script blocks and
cmdlets.

Measure-Object Yes Yes Measures various aspects of objects or their
properties.

Move-Item Yes Yes Movesanitem from one location to another.

Move-ItemProperty Yes Yes Moves aproperty from one location to another.

New-Alias Yes Yes Createsanewcmdlet-alias pairing.

New-Item Yes Yes Createsanewiteminanamespace.

New-ItemProperty Yes Yes Setsanew property of anitem at a location.

New-Object Yes Yes Createsanew .NET object.

New-PSDrive Yes Yes Installs a new drive on the computer.

New-PSEvent No Yes Createsanew event.

New-Runspace No Yes Creates a persistent connection to a PowerShell
session (local or remote).

New-Service Yes Yes Createsanew service.

New-TimeSpan Yes Yes Createsatimespan object.

New-Variable Yes Yes Createsanew variable.

Qut-Default Yes Yes Sends output to the default formatter.

Out-File Yes Yes Sendscommand output to afile.

Qut-GridView No Yes Displays outputin an interactive table, allowing
results to be sorted and searched.

Out-Host Yes Yes Sends the pipelined output to the host.

OQut-Null Yes Yes Sendsoutputtoanull

Qut-Printer Yes Yes Sendsthe output to a printer.

Qut-String Yes Yes Sendsoutput to the pipeline as strings.

Pop-Location Yes Yes Changes the current working location to the
location specified by the last entry pushed onto
the stack.

Pop-Runspace No Yes Terminates aremote interactive session.

Push-Location Yes Yes Pushesalocation to the stack.

Push-Runspace No Yes Startsaremote interactive session.

Read-Host Yes Yes Readsaline of input from the host console.

Receive-PSJob No Yes Retrieves output from background jobs.

Register-ObjectEvent No Yes Registers an event subscription.

Register-PSEvent No Yes Allows you to register with a specific type of
event.

Register-WMIEvent No Yes Allowsyoutoregister with aspecific WMl event.

g _

Chapter 3 ¢ Object-Based Scripting with .NET

é Cmdlet 1.0 2.0 Description A
Remove-Item Yes Yes Callsaprovidertoremove anitem.
Remove-ItemProperty Yes Yes Removes aproperty and its value from the
Llocation.

Remove-Module No Yes RemovesaPSModulelInfoobjectfrom thelistof
loaded modules.

Remove-PSBreakpoint No Yes Deletes breakpoints from the current working
session.

Remove-PSDrive Yes Yes Removes adrive from its location.

Remove-PSEvent No Yes Unsubscribes from an event.

Remove-PSJob No Yes Deletes abackground job.

Remove-PSSnapIn Yes Yes RemovesPSSnapln(s)from the current console
process.

Remove-Runspace No Yes Terminates one or more runspaces.

Remove-Variable Yes Yes Removes avariable and its value.

Remove-WMIObject No Yes Deletes WIMinstances and classes.

Rename-Item Yes Yes Changesthe name of an existing item.

Rename-ItemProperty Yes Yes Renames aproperty atits location.

Resolve-Path Yes Yes Resolves the wildcard characters in a path.

Restart-Service Yes Yes Restartsastopped service.

Resume-Service Yes Yes Resumesasuspended service.

Select-Object Yes Yes Selects objects based on parameters set in the
cmdlet command string.

Select-String Yes Yes Letsyousearch through strings or files for
patterns.

Set-ACL Yes Yes Setsaresource's Access ControlList properties.

Set-Alias Yes Yes Mapsan alias to acmdlet.

Set-AuthenticodeSignature Yes Yes Placesan authenticode signatureinaPs scriptor
other file.

Set-Content Yes Yes Setsthe contentintheitem at the specified
Llocation.

Set-Date Yes Yes Setsthe system time on the host system.

Set-ExecutionPolicy Yes Yes Sets the execution policy for the current shell.

Set-Item Yes Yes Sets the value of a path name within a provider
to the specified value.

Set-ItemProperty Yes Yes Setsaproperty at the specified location to a
specified value.

Set-Location Yes Yes Sets the current working location to a specified
Llocation.

Set-PSBreakpoint No Yes Creates a new breakpoint.

§ y

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

é Cmdlet
Set-PSDebug

Set-Service
Set-StrictMode

Set-TraceSource

Set-Variable

Set-Wmilnstance
Sort-Object
Split-Path

Start-PSJob
Start-PSDebug
Start-PSTransaction
Start-Service
Start-STeep

Start-Transcript
Stop-PSJob
Stop-Process
Stop-Service
Stop-Transcript
Suspend-Service
Tee-0Object
Test-Path

Trace-Command

Update-FormatData
Update-TypeData

Unregister-PSEvent
Wait-Process
Wait-PSEvent
Wait-PSJob

1.0

Yes

Yes

Yes

Yes

Yes
Yes

Yes

Yes
Yes

2.0

Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes
Yes

Yes
Yes
Yes
Yes

Description

Turns Ps script debugging features on and off,
and sets trace level.

Makes and sets changes to the properties of a
service.

Configures and enables or disables strict mode
for the current scope.

Sets or removes the specified options and trace
listeners from the specified trace source
instance(s).

Setsdatainavariableand createsavariableif one
with the requested name does not exist.
Creates or changes a WMl class instance.

Sorts the input objects by property values.
Given a Ps path(s), it streams a string with the
qualifier, parent path, or leaf item.

Starts a background job.

Starts the interactive PowerShell debugger.
Begins a new transaction.

Starts a stopped service.

Suspends shell, script, or runspace activity for
the specified period of time.

Starts a transcript of a command shell session.
Terminates a background job.

Stops a running process.

Stops a running service.

Stops the transcription process.

Suspends a running service.

Sends input objects to two places.

Returns true if the path exists; otherwise, it
returns false.

Enables tracing of the specified trace source
instance(s) for the duration of the expression or
command.

Updates and appends format data files.
Updates the types.ps [xml file in the Microsoft
Shell.

Cancels an event registration.

Waits for the specific process to complete.
Waits for an event before continuing.

Waits for all jobs or a specified job to complete.

~

.

Chapter 3 ¢ Object-Based Scripting with .NET

é Cmdlet 1.0 2.0 Description A
Where-0bject Yes Yes Filters the input from the pipeline, allowing
operation on only certain objects.
Write-Debug Yes Yes Writes adebug message to the host display.
Write-Error Yes Yes Writesan error object and sends it to the
pipeline.
Write-Host Yes Yes Displays objects through the user feedback
mechanism.
Write-Output Yes Yes Writes an object to the pipeline.
Write-Progress Yes Yes Sendsaprogressrecord to the host.
Write-Verbose Yes Yes Writes astring to the host's verbose display.
Write-Warning Yes Yes Writes a warning message.
Update-List No Yes Addand removes items from a property value
containing a collection of objects.
Undo-PSTransaction No Yes Rolls back and undoes a transaction.
Use-PSTransaction No Yes Allows the current transaction to be applied
against transacted objects.
N _J

Although all the cmdlets listed in Table 3.1 are shown using initial uppercase spelling,
cmdlets are not case-sensitive. Therefore, the case that you use when keying them in is entirely
up to you. While you should try to memorize some of these cmdlets, it is probably a good idea
to bookmark this table so that you can come back to it when you need to. Once you have
found a cmdlet that looks like it will suit the needs of your particular task, you can use the
PowerShell Get-Help cmdlet to learn more about it. For example, Figure 3.9 shows a portion
of the output that you will see when using the Get-Help cmdlet to look up information about
the Write-Host cmdlet.

\ The Get-Help cmdlet retrieves information about any cmdlet or PowerShell
i’i\\j\!\ topic. When executed without any parameters, this cmdlet displays a list of help
g\ topics. When passed a cmdlet name or topic, it displays information specific to

that cmdlet or topic.

If you do not have this book handy, you can use the Get-Command cmdlet to
generate a complete list of available cmdlets. You can then use the Get-Help
command to look up detailed information on any cmdlet that you see in the List.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

An example of
how to use the
Get-Help cmdlet
to look up detailed
cmdlet
information.

2 Wincame=omtnl ol =]
| PS5 G:“HMuScriptsr Get-Help WriteHost Aj
| MAHE

Write-Host
| EYMOPEIE

1 WUrites text to the

 myNTAY
| Write-Host [[—object] <Object>] [-noNeylLinel [-separator <ODhject>] [-f
oregroundcolor {Black | DarkBlue | DarkGeeen | DarkCyan | DarkRed | Da
rkHagenta § DarkYellow i Gray i DarkGray | Blue | Gereen i Cyan i Red i |
Hagenta ! Yellow ! White}] [-hackgroundColow {Black ! DawkBlue ! Dawnk
Green | DarkCuyan DarkRed | DarkMagenta | Davk¥Yellow | Gray | DarkGea

uw i Blue | Geeen Cyan | Red } Hagenta } Yellow { Whitel}] L<CommonFar
amelersy]

| DETAILED DESCRIPTION

The Write llost cndlet creates o customized output window. You con spec

ifyu the calae» nf text in that windows hy nsing the FneegroundCnlne paw

{ ameter and you can specifu the background color of the window by using
the BackgroundUolor parameter. The Separator paraneter lets you speci

fy o string to usec to scporate dizployed obhjects. The poarticular resul

t depends on the program that is hosting Windows PowewShell.

'?ELQTED LIHES
Hrite—lUerhose
Hrite-Error
Write—-Progress
Upite—-Debug
write—Qutput
Weite-Harning
Qut-Host

| REMARKS
For more information. tupe: "get—help Urite-Host —detailed".
Fur technical infurmalive. Lype: "yel—-help Weite-Hosl —Full".

[P C:wMySeripts> o

L4

EXECUTING BACKGROUND JoOBS

One new Windows PowerShell feature introduced as part of Windows PowerShell 2.0 is the
ability to execute cmdlets, functions, and scripts as a background job (PSJob). Background
jobs execute behind the scenes without any console interaction. Once started, Windows
PowerShell immediately returns the Windows PowerShell command prompt, allowing you
to keep working and be productive while your background job is running.

Windows PowerShell remoting relies on the Windows Remote Management
(WinRM) service and the WS-Management protocolin order to execute. Instruc-
tions on how to configure remote access was provided in Chapter |.In order to
work, both your computer and the computer that you want to remotely work
with must have Windows PowerShell 2.0 installed and must be configured to
support Windows PowerShell remoting. In fact, remoting must be enabled even
when you only run background jobs locally on your own computer. You also
need appropriate security permission to perform whatever commands you are
attempting to execute on the remote computer.

Chapter 3 ¢ Object-Based Scripting with .NET

Background jobs can be executed on either your local computer or on a network computer
towhich you have security access. Background jobs are perfect for running scripts and cmdlets
that may take a while to execute.

By default, Windows PowerShell immediately returns the results of any command you exe-
cute and displays them in the console window. However, instead of displaying output,
background jobs return and display a number, representing a job object. You can then use
this object to determine the job’s status, to control its execution, and to retrieve its output.

Windows PowerShell provides a number of cmdlets, including Get-Process,
Get-Service, Get-EventlLog, and Get-WMIObject, which allow you to retrieve
information from network computers. These commands do so by invoking .NET
methods to retrieve object data and do not rely on Windows PowerShell’s
remoting’s infrastructure.

Once executed, a background job runs in its own “runspace,” separate from the execution
environment being used by Windows PowerShell in the current console window. The run-
space can be either temporary or persistent, the difference being that a temporary runspace
is deleted as soon as it finishes executing its command or script, whereas a persistent runspace
continues to exist until you explicitly delete it. Persistent runspaces allow things like variables
to persist across different script executions.

Windows PowerShell 2.0 provides seven cmdlets that allow you to learn about and work with
background jobs. These cmdlets, along with a brief description of what each does, is outlined
here:

e About-PSJob. Provides a high-level overview of how to work with background jobs.

e Start-PSJob. Creates and executes a new local or remote background job.

* Receive-PSJob. Retrieves output generated by a background job.

* Wait-PSJob. Instructs Windows PowerShell to wait for a background job to complete.

* Stop-PSJob. Halts the execution of a background job.

* Get-PSJob. Retrieves information about the status of a background job.

e Remove-PSJob. Deletes a background job object (including all of its output).

Windows PowerShell 2.0 also has a New-Runspace cmdlet, which you can use to set up a per-
sistent runspace in which to execute remote jobs.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Creating and Executing Background Jobs
To create and execute a background job that runs in a temporary runspace on your local
computer, you need to use the Start-PSJob cmdlet, as demonstrated here:

PS C:\> Start-PSJob -command "Get-Service"

Sessionld Name State HasMoreData Command
7 Running True Get-Service
PS C:\>

Here, the Get-Services cmdlet is run as a background job on the local computer. Note that
no output is displayed when the Get-Service cmdlet executes. Instead, a little status infor-
mation about the background job is displayed in a table. Among this information is the
Sessionld attribute, which you can use to communicate with and control the job while it
executes. Other data includes state information, showing whether the job is running, failed,
not started, or completed, and HasMoreData, which indicates a value of true if the background
job has any output data available for retrieval.

Remotely Executing a Background Job

To run a background job, remotely, across a network on a computer on which you have
appropriate security access, all you have to do is add the -computername parameter to the end
of the statement, followed by the network computer’s hostname, UNC name, or IP address,
as demonstrated here:

PS C:\> Start-PSJob -command "Get-Service" -computername FileSVR\

Sessionld Name State HasMoreData Command

9 Running True Get-Service

You can run a background job on more than one network computer at a time by
supplying a comma-separated list of computers, as demonstrated here:

PS C:\> Start-PSJob -command "Get-Service" -computername FileSVR,
PrintSVR

Chapter 3 ¢ Object-Based Scripting with .NET

Running the Background Job in a Persistent Runspace

If you want to run a background job in a persistent runspace, you first need to execute the
New-Runspace cmdlet, followed by the Start-PSJob cmdlet (using its runspace parameter) as
demonstrated here:

PS C:\> $RunSP = New-Runspace -computername FileSVR
PS C:\> Start-PSJob -command "Get-Service" -runspace $RunSP

Sessionld Name State HasMoreData Command
11 Running True Get-Service
PS C:\>

Here, a new runspace has been created and assigned to a variable named $RunSP. The start-
PSJob cmdlet is then used to run the "Get-Services" cmdlet, in the $RunSP runspace.

Retrieving Information about Background Jobs

When receiving output from background jobs, your foreground runspace communicates
behind the scenes with the background session, as specified by the Sessionld number. For
example, using the Get-PSJob cmdlet and the SessionId of a background job, you can retrieve
its current status, as demonstrated here:

PS C:\> Get-PSJob 11

Sessionld Name State HasMoreData Command
11 Completed True Get-Service
PS C:\>

In this example, the Get-Service cmdlet was run as a background job. It was assigned a session
ID of 11 and has completed its executed. In addition, as indicated by the HasMoreData field,
the background job has output data that has yet to be received. In addition to retrieving data
about a specific background job, you can retrieve information about all background jobs from
your current working session by executing the Get-PSJob cmdlet without any arguments, as
demonstrated here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

PS C:\> Get-PSJob

Sessionld Name State HasMoreData Command

1 Completed False start-sleep 30
3 Completed True get-process

5 Completed False get-process

7 Completed True Get-Service

9 Failed False Get-Service

11 Completed True Get-Service

PS C:\>

Retrieving Background Job Output

As has already been explained, when you execute a background job, output is not automati-
cally returned when the background job finishes executing. Instead, you have to retrieve the
background job’s output using the Receive-PSJob cmdlet, as demonstrated by the following
example:

PS C:\> $MyjOB = Start-PSJob "Get-Process"
PS C:\> Receive-PSJob $MyjOB

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
103 5 1036 3208 31 0.03 1664 alg
428 6 2596 5020 28 97.31 464 csrss
410 15 9860 17588 68 4.80 1908 explorer
0 0 0 28 0 0 Idle
724 15 42156 14424 142 24.27 1740 iexplore
420 10 3796 2196 40 0.80 544 Tsass
163 4 1268 1856 37 0.08 196 msmsgs
72 3 1852 5140 33 2.50 1232 notepad
270 9 20052 26036 129 2.44 872 powershell
329 11 30740 26888 142 2.19 1752 powershell
1853 19 33184 41096 160 5.69 1784 powershell
278 7 1960 3920 33 1.20 532 services
21 1 168 372 4 0.02 408 smss
104 4 2844 4096 39 0.09 1068 spoolsv

Chapter 3 ¢ Object-Based Scripting with .NET

93 4 1440 3084 35 0.03 660 svchost
193 5 2856 4388 58 0.20 700 svchost
293 13 1684 3940 33 0.42 768 svchost
285 13 11460 12680 58 0.09 808 svchost

1105 24 11236 17928 82 18.31 832 svchost

81 4 1168 2980 28 0.09 880 svchost
232 7 2344 4704 38 0.08 972 svchost
392 0 0 236 2 8.81 4 System
565 61 7264 5096 52 0.77 488 winlogon

81 3 700 2156 17 0.03 328 winrshost

80 3 916 2160 18 0.03 588 winrshost

57 3 860 2688 29 0.05 424 wpabaln
153 3 1844 3124 31 0.08 1556 wuauclt

PS C:\>

Here, a background job has been started and a variable has been used to capture and store
the background’s job session ID and other related information. Then, using the $MyJob vari-
able, the background job’s output was retrieved.

Waiting for a Background to Complete

As you have already seen, the Get-PSJob cmdlet returns a table that lists all of the background
jobs in the currently working environment (except for those that have been deleted). The
HasMoreData column in the table shows whether background jobs have any data that is ready
for retrieval. By default, each time you retrieve output from a background job, that output is
removed from the job and is no longer retrievable. Subsequent retrieval operations only
retrieve data that has not already been retrieved.

TheRetrieve-PSJobcmdletsupportsa -keepargumentthat whenused,instructs
PowerShell to retain all of the output belonging to a background job, so that it
will all be there the next time a retrieval is performed.

If you have a background job that you decided you want to wait on before continuing your
work, you can execute the Wait-PSJob cmdlet, passing the cmdlet the session ID of the back-
ground job that it should wait on. When you do this, the Windows PowerShell’s command
prompt goes away and does not reappear until the specified background job finishes. To get
a better understanding of how this works, take a look at the following example:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

PS C:\> Start-PSJob "Start-Sleep 60"

Sessionld

Name State HasMoreData Command

Running True Start-Sleep 60

PS C:\> Wait-PSJob 15

Here, a background job has been started that runs a cmdlet named Start-Sleep. The Start-
Sleep cmdlet does just what its name implies, puts your Windows PowerShell script to sleep
for a specified period of time. In the case of this example, it goes to sleep for 60 seconds. Since
the Start-Sleep cmdlet was executed as a background job, you are free to continue working
at the Windows PowerShell command prompt while the cmdlet executes. However, the exe-
cution of the Wait-PSJob cmdlet in this example changes things, suppressing the command
prompt until the background finishes its execution.

Using a combination of the Get-PSJob and the Wait-PSJob cmdlets, you can build
a statement that waits for all background jobs to finish executing, as demon-
strated here:

Get-PSJob | Wait-PSJob

To facilitate discussion and keep the example simple, all of the background job
examples that you have seen have demonstrated how to execute cmdlets that
run quickly and produce recognizable output. In reality, background jobs are
better utilized to execute long running jobs that take time to execute, such as
the example shown here:

$Mydob = Start-PSJob -command -Get-EventlLog -log application-

This background job retrieves all of the records stored in the computer’s appli-
cation event log. Depending on the size of the application event log, the back-
ground job might take a while to execute. If this statement were part of a script
that processed the eventlog datain some manner, things might take even longer
torun.

Stopping Background Job Execution
If you want, you can halt the execution of a background job using the Stop-PSJob cmdlet, as
demonstrated here:

PS C:\> Stop-PSJob 15

Chapter 3 ¢ Object-Based Scripting with .NET

The Stop-PSJob cmdlet only halts PSJob execution; it does not remove them. To do that you
need to execute the Remove-PSJob cmdlet, discussed in the next section.

Stop-PSJob -state running

In addition to stopping a background job using its session ID, you can also stop
background jobs using their session state, as demonstrated here:

Here, all background jobs with a state of running are halted.

Deleting a Background Job
Windows PowerShell maintains information about every PSJob executed in your current
working session and keeps this information in cache until you close the console session
in which you are working or until you explicitly delete the background jobs. Using the
Remove-PSJob cmdlet, you can delete a background job and its output. For example, suppose
you had executed three background jobs, as shown here:

PS C:\> Get-PSJob

Sessionld Name

PS C:\>

Completed
Completed
Completed

HasMoreData Command

False start-sleep 30
True get-process
False get-process

You can use the Remove-PSJob cmdlet to remove the background job with a session ID of 5 by
executing the following statement.

PS C:\> Remove-PSJob 5

By executing the Get-PSJob cmdlet as shown next, you can verify that the specified back-
ground job has indeed been deleted.

PS C:\> Get-PSJob

Sessionld Name

PS C:\>

Completed
Completed

HasMoreData Command
False start-sleep 30
True get-process

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

You can use the Get-PSJob cmdlet in conjunction with the Remove-PSJob cmdlet
to delete all background jobs started from within your current working envi-
ronment, as demonstrated here:

Get-PSJob | Remove-PSJob

There is a whole lot more to working with background jobs than just the
basics that have been covered in this chapter. To learn more, use the Get-Help
cmdlet to review the help files associated with the Create-PSJob, Get-PSJob,
Retrieve-PSJob, Wait-PSJob, Stop-PSJob, and Remove-PSJob cmdlets.

WiNDOows POWERSHELL PLUMBING

Object pipelines are the conduit through which cmdlets pass object data to one another.
Unlike traditional command shells, which only pass text data, Windows PowerShell passes
different types of object data through its pipeline. You have already seen many examples of
PowerShell object pipelines in use. The following series of examples are designed to further
help you understand the versatility and power of PowerShell pipelines.

Let’s begin by using the Get-ChildItem cmdlet to generate a list of files and folders located in
the current working directory, as demonstrated here:

PS C:\> Get-ChildItem

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

d---- 2/24/2008 9:29 PM DarkBASIC
d---- 10/3/2008 11:47 AM MyScripts
d---- 9/9/2008 7:20 PM Perflogs
d-r-- 9/8/2008 11:44 PM Program Files
d---- 7/7/2007 4:24 PM ruby

d---- 9/22/2008 12:05 AM Temp

d-r-- 4/26/2008 10:58 PM Users

d---- 9/9/2008 7:32 PM Windows
-a--- 3/3/2007 7:52 AM 74 autoexec.bat
-ar-s 3/3/2007 7:26 AM 8192 BOOTSECT.BAK
-a--- 9/18/2006 5:43 PM 10 config.sys

Chapter 3 ¢ Object-Based Scripting with .NET

-a--- 3/3/2007 7:40 AM 396 RHDSetup.log

PS C:\>

Pipelines are created using the | character. Using pipelines, you can combine two or more
cmdlets together to compose a logical statement that takes advantage of the combined capa-
bilities of both cmdlets. For example, consider the following statement that takes the output
generated by the Get-ChildItem cmdlet and passes it to the Sort-0bject cmdlet.

PS C:\> Get-ChildItem | Sort-Object

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

-a--- 3/3/2007 7:52 AM 74 autoexec.bat
-ar-s 3/3/2007 7:26 AM 8192 BOOTSECT.BAK
-a--- 9/18/2006 5:43 PM 10 config.sys
d---- 2/24/2008 9:29 PM DarkBASIC
d---- 10/3/2008 11:47 AM MyScripts
d---- 9/9/2008 7:20 PM Perflogs
d-r-- 9/8/2008 11:44 PM Program Files
-a--- 3/3/2007 7:40 AM 396 RHDSetup.log
d---- 7/7/2007 4:24 PM ruby

d---- 9/22/2008 12:05 AM Temp

d-r-- 4/26/2008 10:58 PM Users

d---- 9/9/2008 7:32 PM Windows

The Sort-0bject cmdletsorts alist of objects passed to it by other cmdlets, thus
changing the orderin which objects are passed down the pipeline.In the previous
example, the sort operation was performed (by default) using the Name property.
However, you can override this by specifying a different property. Likewise, you
can change the default sort order from ascending to descending. To learn more
aboutthe Sort-0bject, type Get-Help Sort-0bject atthe windows PowerShell
command prompt.

Asyou can see, the output from the Get-ChildItemcmdlet has been removed from the pipeline,
sorted, and then added back in an ascending order by the Sort-0bject cmdlet. Now that we

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

have a sorted list of objects, let’s process them even further. In this next example, the sorted
list of objects in the pipeline is next processed by the Where-0bject cmdlet.

PS C:\> Get-ChildItem | Sort-Object | Where-Object { $_.Length -gt 200 }

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

-ar-s 3/3/2007 7:26 AM 8192 BOOTSECT.BAK
-a--- 3/3/2007 7:40 AM 396 RHDSetup.log
PS C:\>

In this example, the Where-0bject cmdlet, which removes objects failing to meet a specified
criteria from the pipeline, is passed an expression enclosed within matching {} brackets. This
expression takes each object passed through the pipelines, as represented by $_, and examines
the value of its Length property to see if it is greater than 200. Note the use of the . to connect
the $_ to the keyword Length. This is an example of dot notation, which is the syntax you must
follow when identifying an object property.

Again, don’t get too hung up on the syntax used in the previous example to build the expres-
sion passed as an argument to the Where-0Object cmdlet. You will learn everything you need
to know about PowerShell statement syntax in Chapters 4 through 7. For now, the important
thing to take away from this example is an understanding of pipelines and their use in passing
structures between cmdlets in order to build complex logical statements.

TheWhere-0bject cmdlet providestheability tofilteroutunwanted objects from
the pipelinesbasedoninputpassedtoitasanargument.Intheprevious example,
the Where-0Object was instructed to remove any object whose Length property
was less than 200 bytes.

$_ is a special variable created and maintained by Windows PowerShell. $_ is
automatically assigned the name of the current objectin the PowerShell pipeline
and, in the case of the Where-0bject cmdlet, to reference each object in a col-
Llection. In the previous example, the collection was composed of every file in
the current working directory.

Chapter 3 ¢ Object-Based Scripting with .NET

WORKING WITH ALIASES

As you have already seen with the Get-ChildItem cmdlet, the Windows PowerShell provides
access to two different alias commands (dir and 1s), each of which can be executed in place
of this cmdlet in order to produce the same results. An alias is a shortcut to another cmdlet.
Microsoft developed these aliases to help ease the transition from traditional command shells
to Windows PowerShell. Table 3.2 provides you with a quick reference to all the aliases sup-
ported by the Windows PowerShell and identifies which version of Windows PowerShell
supports them.

You can use the Get-Alias cmdlet to display a list of all the aliases supported by
Windows PowerShell.

TABLE 3.2 WINDOWS POWERSHELL CMDLET ALIASES

Alias Cmdlet 1.0 2.0 Alias Cmdlet 1.0 2.0
ac Add-Content Y Y rp Remove-
I[temProperty
asnp Add-PSSnapln Y Y rsnp Remove-PSSnapln Y Y
clc Clear-Content Y Y rv Remove-Variable Y Y
cli Clear-Item Y Y rwmi Remove-WMIObject N Y
clp Clear-ItemProperty Y Y rvpa Resolve-Path Y Y
clv Clear-Variable Y Y sal Set-Alias Y Y
cpi Copy-Item Y Y Sasv Start-Service Y Y
cpp Copy-ItemProperty Y Y sbp Set-PSBreakpoint N Y
cvpa Convert-Path Y Y SC Set-Content Y Y
dbp Disable- N Y select Select-Object Y Y
PSBreakpoint
diff Compare-0bject Y Y Si Set-Item Y
ebp Enable- N s Set-Location Y
PSBreakpoint
epal Export-Alias Y Y swmi Set-WMIInstance N Y
epcsv Export-Csv Y Y sleep Start-Sleep Y Y
fc Format-Custom Y Y sort Sort-Object Y Y
1 Format-List Y Y Sp Set-ItemProperty Y Y
foreach ForEach-0bject Y Y Spps Stop-Process Y Y
4 ForEach-0bject Y Y Spsv Stop-Service Y Y
SV Set-Variable Y y sti Step-Into N Y
g _

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

rAlias Cmdlet 1.0 2.0 Alias Cmdlet 1.0 2.()1
ft Format-Table Y Y fw Format-Wide Y Y
where Where-Object Y y sto Step-QOver N Y
gal Get-Alias Y Y stu Step-Out N Y
gbp Get-PSBreakpoint N y tee Tee-Object Y Y
gc Get-Content Y Y ? Where-Object Y Y
gci Get-ChildItem Y Y write Write-Output Y Y
gcm Get-Command Y Y cat Get-Content Y Y
gdr Get-PSDrive Y Y cd Set-Location Y Y
gcs Get-PSCallStack N Y clear Clear-Host Y Y
ghy Get-History Y Y cp Copy-Item Y Y
gi Get-Item Y Y h Get-History Y Y
gl Get-Location Y Y history Get-History Y Y
gm Get-Member Y Y kill Stop-Process Y Y
ap Get-ItemProperty Y Y 1p Qut-Printer Y Y
aps Get-Process Y Y 1s Get-ChildItem Y Y
group Group-0Object Y Y mount New-PSDrive Y Y
gsv Get-Service Y Y mv Move-Item Y Y
gsnp Get-PSSnapIn Y Y popd Pop-Location Y Y
qu Get-Unique Y Y ps Get-Process Y Y
gv Get-Variable Y Y gwmi Get-WmiObject Y Y
ihy Invoke-History Y Y pushd Push-Location Y Y
ii Invoke-Item Y Y iex Invoke- Y Y

Expression
iwmi Invoke-Item N Y pwd Get-Location Y Y
ipal Import-Alias Y Y r Invoke-History Y Y
ipcsv Import-Csv Y Y rm Remove-Item Y Y
mi Move-Item Y Y rmdir Remove-Item Y Y
mp Move-ItemProperty Y Y echo Write-Output Y Y
nal New-Alias Y Y cls Clear-Host Y Y
ndr New-PSDrive Y Y chdir Set-Location Y Y
ni New-Item Y Y copy Copy-Item Y Y
nv New-Variable Y Y del Remove-Item Y Y
oh Qut-Host Y Y dir Get-ChildItem Y Y
ogv Out-Host N Y erase Remove-Item Y Y
grid Qut-GridView N Y move Move-Item Y Y
rbp Remove- N Y rd Remove-Item Y Y
PSBreakpoint
rdr Remove-PSDrive Y Y ren Rename-Item Y Y
ri Remove-Item Y Y set Set-Variable Y Y
rni Rename-Item Y Y type Get-Content Y Y
rnp Rename- Y Y icm Invoke-Command N Y
I[temProperty
e _J

Chapter 3 ¢ Object-Based Scripting with .NET @

As you can see, the list of aliases supported by Windows PowerShell is quite extensive. While
convenient as a short-term solution for executing cmdlets, I suggest that you resist the temp-
tation of using these aliases and instead take the time needed to learn the PowerShell’s cmdlet
names. This will help make your PowerShell scripts easier to maintain and support in the
long run.

Windows PowerShell also lets you define your own custom aliases. This is
accomplished using the Get-Alias cmdlet, which requires two arguments. The
first argument is the alias to be assigned and the second argument is the name
of the cmdlet for which the alias is to be associated. For example, the following
statements create a new alias of ds for the Write-Host cmdlet.

Set-Alias ds Write-Host

You may recollect seeing an example of thisinaction earlierin this chapter when
you read about how to programmatically customize Windows PowerShell.

Windows PowerShell does not perform any verification of the validity of an alias
assignment when using the Set-Alias cmdlet. It is up to you to test and ensure
that your new alias works as expected and that you did not mistype the name of
the target cmdlet.

BAck TO THE POWERSHELL FORTUNE TELLER GAME

Okay, itis time to turn your attention back to the chapter’s main game project, the PowerShell
Fortune Teller game. This game will involve the use of a number of programming techniques,
including conditional logic and looping. You will also learn how to instantiate (establish a
new instance of) a new random object in order to generate a random number.

Designing the Game

The PowerShell Fortune Teller game begins by displaying a welcome screen and then provid-
ing the player with instructions on how to formulate questions. Next, the player is prompted
to ask a question. In response, the game will display a randomly generated answer based on
the value of the script’s randomly generated number. The specific answer displayed by the
script will also vary based on the time of day, since the fortune teller gets a bit cranky in the
afternoon. Once the player’s question has been answered, the script will prompt the player
to either ask a new question or terminate the script’s execution. Thus, the player is allowed
to ask as many questions as he wants. Once the player indicates that he wants to terminate
the script, the game ends by inviting the player to return and play again.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The development of this script will be completed in six steps, as outlined here:

. Create a new script file and add opening comment statements.
. Clear the screen and initialize script variables.

. Display the opening welcome screen.

. Display the rules for formulating questions.

. Prompt the player to ask questions and then generate answers.
. Invite the player to play again and terminate script execution.

AUl A W N =

Creating a New PowerShell Script
The first step in the creation of the PowerShell Fortune Teller game is to create a new
PowerShell file named FortuneTeller.ps1 and add the following statements to it.

j kkkkkkkkkkkhkkhkhkhkkhkkhkhkkhkhhhkhkhkhkhhhhhkkhhhkhhkhkhkhhhhkhkhkkhkhkhkhkhkhkkhkhhkhhkhkrkkhkhkhkhkkkhkhxkkx

#

Script Name: FortuneTeller.psl (PowerShell Fortune Teller)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 4, 2008

#

Description: This PowerShell script provides random answers to player
1 questions.

#

KRR ARk Ak kA A A kA kA hk Ak kA Ak kA hhk kA kA kA hkhkhk kA Ak hkhkhhkkhhhhkhhhkhkhkkhkhhkkhhkkhhhkhkhkxkkkkkxkkx

f#Clear the Windows command console screen
Clear-Host

As you can see, so far the PowerShell script file consists of comment statements that provide
high-level script documentation and execute the Clear-Host cmdlet, which is called to clear
the display area of the Windows command console.

Declaring and Initializing Variables

The next step in the creation of the PowerShell Fortune Teller game is to declare variables
used throughout the script and to assign initial values to these variables. This is accomplished
by appending the following statements to the end of the PowerShell script file.

#Define the variables used in this script to collect player input
$question = "" #This variable will store the player's question
$status = "Play" #This variable will be used to control game termination

Chapter 3 ¢ Object-Based Scripting with .NET @

$answer = 0 #This variable stores a randomly generated number
$randomNo = New-Object System.Random #This variable stores a random object
$time = (Get-Date).Hour #This variable stores the current hour of the day

Note that I have not only provided descriptive names for each variable but I have also added
comments that document the purpose and use of each variable.

Displaying the Welcome Screen

The next step in the development of the PowerShell Fortune Teller game is the addition of
the statements that display the game’s welcome screen. These statements, shown next, should
be added to the end of the script file.

#Display the game's opening screen

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " WELCOME TO THE WINDOWS"
Write-Host

Write-Host

Write-Host

Write-Host " POWERSHELL FORTUNE TELLER"
Write-Host

Write-Host

Write-Host

Write-Host " By Jerry Lee Ford, Jr."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue.”

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#fPause script execution and wait for the player to press the Enter key
Read-Host

The screen content is created using multiple instances of the Write-Host cmdlet. The last
statement shown above uses the Read-Host cmdlet to pause script execution until the player
presses the Enter key.

Displaying Game Instructions

After reading and dismissing the game’s welcome screen, instructions need to be displayed
that provide the player with guidance on how to formulate questions for the fortune teller.
This is accomplished by adding the following statements to the end of the script file.

#Clear the Windows command console screen
Clear-Host

#Provide the player with instructions
Write-Host

Write-Host " The fortune teller is a very busy and impatient mystic. Make"
Write-Host

Write-Host " your questions brief and simple and only expect to receive"
Write-Host

Write-host " Yes / No styled answers."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Chapter 3 ¢ Object-Based Scripting with .NET @

Write-Host " Press Enter to continue.”
f#Pause script execution and wait for the player to press the Enter key
Read-Host

As with the statements that generated the welcome screen, the statements that display the
game’s instructions clear the screen, write text output, and then pause the script’s execution
until the player presses the Enter key.

Controlling Gameplay
The programming logic that controls the core activities of the game is outlined next and
should be appended to the end of the script file

fiContinue gameplay until the player decides to stop
while ($status -ne "Stop") {

fiAsk the player the first question
while ($question -eq ""){

Clear-Host {Clear the Windows command console screen
Write-Host

$question = read-host " What is your question? "

$question = "" {Reset variable to an empty string

f#fRetrieve a random number between 1 and 4
$answer = $randomNo.Next(1,5)

fiSeTect an answer based on the time and the random number
#If it is the afternoon the fortune teller will be a little cranky
if ($time -gt 12) {

Write-Host

if ($answer -eq 1) { " Grrrr. The answer is no!" }

if ($answer -eq 2) { " Grrrr. The answer is never!" }

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

if ($answer -eq 3) { " Grrrr. The answer is unclear!" }
if ($answer -eq 4) { " Grrrr. The answer is yes!" }

}
#If it is morning, the fortune teller will be in a good mood
else {

Write-Host

if ($answer -eq 1) { " Ah. The answer is yes!" }

if ($answer -eq 2) { " Ah. The answer is always!" }

if ($answer -eq 3) { " Ah. The answer is uncertain!" }
if ($answer -eq 4) { " Ah. The answer is no!" }

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host " Press Enter to continue."

ffPause script execution and wait for the player to press the Enter key
Read-Host

#Clear the Windows command console screen

Chapter 3 ¢ Object-Based Scripting with .NET @

Clear-host
Write-Host

#fPrompt the player to continue or quit
$reply = read-host " Press Enter to ask another question or type Q to quit."
if ($reply -eq "q") { $status = "Stop" }

}

The statements that make up this portion of the script file consist of a number of program-
ming statements that will not be formally covered until Chapters 5 and 6. These statements
involve conditional and looping logic. Unfortunately, it is all but impossible to develop
PowerShell scripts of any real complexity without using some conditional or looping logic
and there is only so much information that can be presented at one time. To make things
easier to understand, I have added many comments throughout the script file. However,
because this book has not yet covered these programming constructs, I will not cover them
in great detail now. As a result, you may want to return and review this script once you have
read Chapters 5 and 6.

The overall logic that controls gameplay, allowing the player to ask as many questions as
desired, is controlled by a while loop that executes until the value of a variable named
$status is set equal to "Stop." Within this loop, another while loop is defined in order to
ensure that the player enters something, as opposed to simply pressing the Enter key when
prompted to ask the fortune teller a question.

Next, a random number is generated in the range of 1 to 4. Then a variable named $time is
checked to see if its value is greater than 12. If it is, the fortune teller is said to be tired and
cranky, thus resulting in the display of 1 of 4 less friendly answers (based on the game’s
randomly generated number). However, if it is still morning, a more positive set of answers
is used when retrieving the fortune teller’s answer.

INT

N=

Instead of instantiating a Random object and then using its Next method to
generate a random number, Windows PowerShell 2.0 programmers have the
option of using the Get-Random cmdlet. Though easier to use, it suffers from a
lack of backwards compatibility with Windows PowerShell |.0.

Next, the selected answer is displayed and the player is prompted to either press Enter to ask
another question or to type Q to signal the script that it is time to stop executing. If the player

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

enters Q, the value of the $status variable is set equal to "Stop" thus halting the while loop
that controls the overall execution of the script.

Displaying the Closing Screen

Once gameplay has been finished, the player should be invited to return and ask the fortune
teller more questions. This is accomplished by adding the following statements to the end of
the script file.

#Clear the Windows command console screen
Clear-Host

#Provide the player with instructions
Write-Host

Write-Host " Very well then. Please return again to get all your questions”
Write-Host " answered."

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " Press Enter to continue."”

f#Pause script execution and wait for the player to press the Enter key

Chapter 3 ¢ Object-Based Scripting with .NET

Read-Host

f#Clear the Windows command console screen
Clear-Host

The player dismisses this invitation to return and play again by pressing the Enter key, after
which the screen is cleared and the script file stops executing.

Okay, that’s it. Assuming that you have not made any typos when keying in this code for the
PowerShell Fortune Teller game, everything should work as advertised.

SUMMARY

In this chapter, you learned about the .NET Framework class library and common runtime
language. You learned how Windows PowerShell cmdlets allow you to access and interact
with resources exposed by the .NET Framework. You also learned how to use a number of new
cmdlets, including the Get-Help cmdlet, which you can use to get additional information on
any cmdlet or PowerShell topic. You also learned how to find out about object properties and
methods that are not displayed by default when executing cmdlets, but which are nonetheless
available behind the scenes. You learned more about working with aliases, including how to
create your own custom aliases. This chapter also explained how Windows PowerShell uses
object pipelines to pass structured data between cmdlets. Lastly, you learned how to create
the PowerShell Fortune Teller game.

Now, before you move on to Chapter 4, I recommend that you take a few extra minutes to
improve and enhance the PowerShell Fortune Teller game by implementing the following
challenges.

CHALLENGES

I. Consider making the game less predictable by expanding the
range of answers available to the game. You might even add a
response in which the fortune teller takes offense to a ques-
tion and refuses to answer.

2. Consider furtheraltering the fortune teller’s mood by making
her even crankier as the day turns into night.

This page intentionally left blank

Part

11

Learning How to Write PowerShell
Scripts

This page intentionally left blank

(cHAPTER)

WORKING WITH VARIABLES,
ARRAYS, AND HASHES

his is the first of four chapters designed to teach the fundamentals of the
Windows PowerShell scripting language. In this chapter, you will learn
how to store, retrieve, and modify data. You will learn how to store indi-
vidual pieces as well as collections of data. This chapter will also cover a number
of other PowerShell language topics, including the use of keywords, escape char-
acters, and string manipulation techniques. You will also learn how to work with
a number of PowerShell operators. On top of all this, you will get the opportunity
to create your next Windows PowerShell computer game, the Seinfeld Trivia Quiz.

Specifically, you will learn how to:

* Create and store individual pieces of data in variables

» Store and access collections of data in arrays and hashes
* Access Windows PowerShell special variables

* Execute the -Replace and Range operators

* Concatenate strings

* Format and control the display of text using escape characters

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE SEINFELD TRIVIA QuIZ
This chapter’s game project is the Seinfeld Trivia Quiz, which tests the player’s knowledge of
the popular Seinfeld TV series. The game consists of five multiple-choice questions. When first
started, the game’s welcome screen appears, as shown in Figure 4.1.

The welcome

screen for the

Seinfeld Trivia
Quiz.

| £= Winoaws Pawershell

—lojx]

WELGCUORE T0O THE SEINFELD

TRIVIR QuUuIz

By Jerry Lee Ford, Jr.

Fress Enter to continue.
[

=

After pressing Enter to dismiss the welcome screen, instructions are displayed that explain

the make up of the quiz and the grading scale, as demonstrated in Figure 4.2.

The playeris
awarded a ranking
based on the
number of
correctly
answered
questions.

| &= Winaawe Pwersnell

—Ioix|

The Seinfeld Trivia Ouiz tests vour knowledge of Seinfeld
trivia. The guiz consists of five egually weighted multiple
choice guestions. At the end of the gquiz wvour answers will
e checked and you will be assigned a skill lewvel, using

the following scale.

correct
correct

Score: &
4
3 correct
2
d:
a

Jevery CExpartd
Kramer
Elaine
George
Hewran

Baho (Clueless?

COPFECT
correct
correct

Press Enter to continue.

-

=|i

Next, the game displays its questions, one at a time, as demonstrated in Figure 4.3.

Once the player has finished taking the quiz and presses Enter to submit her last answer, the
screen shown in Figure 4.4 appears, letting the player know that the game is about to grade

the quiz.

Chapter 4 « Working with Variables, Arrays, and Hashes @

After grading the quiz, the game informs the player how many questions were correctly
answered and assigns a ranking based on that value, as demonstrated in Figure 4.5.

k5 Windows PowerShell _[of =]

-
What is liramer’s [irst name? j
fi. Peterman
B. Cosmo
G. Puddy
D. Peck

Type the letter representing the correct answer and press the Enter key:

Each question on
the quiz presents
the player with
four possible

&l answers from
which to choose.

= Windows PowerShell — o] =|
O, now press the Enter key to see how you did. ﬂ

FIGURE 4.4

The game
announces that it
is now ready to
analyze the
&l player’s quiz
results.

£ Windows PowerShell _ o] x|
You got 4 guestions correct. ﬂ

Your knowledge of Seinfeld trivia iz about as good as Kramer’'s.

The player
correctly
&l answered four
quiz questions.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The last screen displayed by the Seinfeld Trivia Quiz, shown in Figure 4.6, thanks the player
for taking the time to complete the quiz.

25 Windows PowerShell — o] =|
Thanks [or taking the Seinfeld Trivia Qui=z? il
FIGURE 4.6
The game ends by
thanking the El
player.

WiNDows POWERSHELL LANGUAGE FEATURES

Although the primary focus of this chapter is on the storage and retrieval of data during script
execution, there are a few additional topics that need to be covered to help round out your
understanding of PowerShell scripting basics. These topics include:

¢ Reserved words
e Escape characters

e String manipulation

Windows PowerShell Reserved Words

Like any programming language, Windows PowerShell has a collection of reserved words (also
referred to as keywords) that have a special meaning to the language and thus are not available
for use as variable, array, associative array, and function names.

A reserved word is a keyword that Windows PowerShell has predefined as having a special
purpose. An example of a PowerShell reserved word is if, which is used to set up conditional
tests in order to evaluate when a condition is true or false and then control the logical exe-
cution of one or more script statements based on that result. As a reserved word, you must
use the if keyword according to the strict syntactical rules defined by Windows PowerShell.
Therefore, you cannot create a variable or array or any other identifier named if in your
PowerShell scripts. Table 4.1 provides a listing of PowerShell reserved words.

Chapter 4 « Working with Variables, Arrays, and Hashes @

TABLE 4. | WiNDoOwSs POWERSHELL RESERVED WORDS

Keyword Keyword Keyword Keyword
break filter in until
continue for Tocal where
do foreach private while
else function return
elseif if switch
N _g

Escape Characters

As you write more and more PowerShell scripts, you are going to come across situations in
which you will want to exercise detailed control over how text is displayed in the Windows
command console. As you have seen in previous chapter script game examples, one way to
do so is to use an extra instance of the Write-Host cmdlet and embed blank spaces inside
strings, as demonstrated by the following.

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host " WELCOME TO THE WINDOWS"
Write-Host

Write-Host

Write-Host

Write-Host " POWERSHELL FORTUNE TELLER"
Write-Host

Write-Host

Write-Host

Write-Host " By Jerry Lee Ford, Jr."
Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Write-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host
Write-Host
Write-Host
Write-Host " Press Enter to continue.”

This example required 24 lines of code. While certainly intuitive and easy to understand,
using the Write-Host cmdlet in this manner consumes a lot of space and bloats your
PowerShell script code. An alternative way to exercise detailed control over your text string
output is to take advantage of PowerShell’s escape characters.

An escape character is a character that has special meaning to Windows PowerShell. Escape
characters are identified by the * character (typically located just over the Tab key on most
keyboards). Using escape characters you can insert tabs and newline feeds at any point within
a text string. For example, you can insert an "n at any point within a string to force an imme-
diate newline operation, thus breaking the display of a string into two lines. Likewise, you
can insert a "t within a text string to insert a logical tab. Using just these two escape charac-
ters, you could rework the previous example as demonstrated here:

Write-Host "“n'n*n*n*t"tW ELCOME TO THE WINDOWS"
Write-Host "“n*n°n"t POWERSHELL FORTUNE TELLER"
Write-Host "*n*n*nt*tt By Jerry Lee Ford, Jr."

Write-Host ""*n*n*nn*n*n*n*n n°n Press Enter to continue."

Believe it or not, this example provides for the exact same outputin just four statements. The
previous example was produced by 24 statements. Windows PowerShell supports a number
of different escape characters, as outlined in Table 4.2.

TAaBLE 4.2 WINDOWS POWERSHELL EscAPE CHARACTERS

Escape Character Description
! Single quote
o Double quote
0 Null
“a Alert
“b Backspace
o f Form feed
“n Newline
r Carriage return
“t Horizontal tab
TV Vertical tab

. >

Chapter 4 « Working with Variables, Arrays, and Hashes

To learn more about Windows PowerShell’s escape characters, execute the
following statement at the Windows PowerShell command prompt:

Get-Help about_escape_character

When added to the end of a statement, the ° character instructs Windows
PowerShell to continue the statement onto the next line, as demonstrated here:

Write-Host "Once upon a time there was a Tittle girl that Tived in a
small" °
"house on the edge of the forest."

When displayed, the output produced by this statement will display just as if
the statement had been written on a single line.

String Manipulation

Windows PowerShell provides a number of different string manipulation techniques that
you will find helpful when developing Windows PowerShell scripts. These techniques include
string concatenation, character repetition, and substring replacement.

Concatenation
Windows PowerShell allows you to use the += operator to concatenate or join together two
strings, as demonstrated by the following.

$x = "Once upon

$y = "a time..."
$z = $x += $y
$z

In this example, two strings are assigned to variables named $x and $y. The third statement
uses the += operator to concatenate the values assigned to these two variables in order to
create a new string, which is assigned to a variable named $z. When executed, this example
generates the following output.

Once upon a time...

Windows PowerShell also allows you to concatenate two strings together using just the +
operator, as demonstrated here:

$x = "Once upon "
$y = "a time..."
$z = $x + $y

$z

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

When executed, this example produces output that is identical to the previous example.

Repeating Character Strings
Another string manipulation technique that you may find helpful is the ability to repeat the
display of strings using the * operator, as demonstrated here:

$x = "Ha " * 3
$x
In this example, the string "Ha " is repeated three times, resulting in the output shown here:

Ha Ha Ha

This programming technique can be useful in situations where you need to generate reports
in which you want to format report headings that use repeated characters to help visually
separate report contents, as demonstrated here:

$x = "-" * 50

Write-Host $x

Get-Date

Write-Host

Write-Host "Report Title"
Write-Host

Write-Host $x

Here, a variable named $x is assigned a string made up of 50 - characters. This variable is
displayed twice in order to provide a visual border within which a report heading, made up
of a date and title, is displayed, as shown here:

Monday, October 13, 2008 12:37:52 AM

Report Title

Replacing Parts of a String

The replace operator (-replace) lets you replace all or a portion of a string. To use the replace
operator, you specify the string to be manipulated followed by the replace operator and then
two operator arguments. The first argument is the part of the script that you want to replace
and the second argument is the replacement string. To see the replace operator in action,

Chapter 4 « Working with Variables, Arrays, and Hashes @

take a look at the following example, which takes a string and replaces the word boy with the
word girl.

$x = "Once upon a time there was a 1ittle boy."
$y = $x -replace "boy", "girl"
$y

When executed, this example displays the following output.

Once upon a time there was a Tittle girl.

Note that as the previous example demonstrates, you can display the contents
of a variable by simply referencing its name in your script.

Splitting and Joining Strings

Windows PowerShell 2.0 introduces a pair of new operators that allow you to manipulate
strings by splitting them into substrings and by joining different substrings back into a single
string. The first of these new operators is the -split operator. The -sp1it operator provides
you with the ability to split a string into one or more substrings. In its simplest usage, you
can use the -split operator to subdivide a string into a series of substrings using whitespace
as a delimiter, as demonstrated here:

PS C:\> -split "Once upon a time there was a Tittle boy named William."
Once
upon

a

time
there
was

a

Tittle
boy
named
WiTliam.
PS C:\>

Alternatively, you can specify a delimiter to be used when splitting a string into substrings
as demonstrated here:

PS C:\> "1,2,3,4,5" -split ','
1

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

2
3
4
5
PS C:\>

In this example, a string of values separated by commas, is split, by telling the -sp1it operator
to use the comma as a delimiter character.

The reverse of splitting a string is the joining of two or more strings into a new larger string,
which you can do using the new - join operator. When used, the - join operator appends each
specified string together in the order they are presented in the command, as demonstrated
in the following example:

$alphabet = -join ("abcdefghi", "jklmnopgr", "stuvwxyz")
Write-Host $alphabet

Here, three strings, each of which contains a portion of the letters that make up the alphabet,
are joined together. When executed, this example displays the following output:

abcdefghijkImnopgrstuvwxyz

Like the -sp1it operator, the -join operator also allows you to specify a delimiter which you
can use to format the output of the new string, as demonstrated here:

PS C:\> "In", "the", "end", "there", "can", "only", "one." -join
In the end there can only one.
PS C:\>PS C:\>

Here, the - join operator has been instructed to use a blank space as a delimiter when joining
together a series of smaller strings.

STORING AND RETRIEVING DATA

In any programming language, programmers need a mechanism for storing and retrieving
data. You can programmatically access numerous types of data by executing cmdlets. You can
then manipulate the data that is generated using other cmdlets as the data passes through
the object pipeline. However, there are limits to this approach. In many circumstances, you
will find that you need to be able to store data for later analysis, manipulation, and display.

Windows PowerShell’s programming language provides you with several different ways of
storing data, as listed here:

Chapter 4 « Working with Variables, Arrays, and Hashes @

e Variables. Store individual pieces of data.
e Arrays. Store data as an index list.

e Hashes. Store data in key-value pairs.

Variables

Variables provide a means of storing data within your Windows PowerShell scripts. Using
variables, you can store just about anything you want, including numbers, strings, and
objects. If you store object data returned as output by a cmdlet, PowerShell is able to retain
an awareness of the object types and therefore the properties and methods associated with
the object.

Naming Your Variables

Windows PowerShell variable names are not case-sensitive, meaning that if you define a vari-
able named $username, you can later refer to it as $USERNAME and PowerShell will understand
what you mean. Windows PowerShell variable names can include characters, numbers, and
the underscore character (_). Windows PowerShell variable names must begin with the $
character. Examples of valid variable names include:

e $userName
e $total
e $1stName

* $game_winner
Examples of invalid variable names include:

e $user Name
e $totall!
o $H1,).@%&

The first example is invalid because it includes a blank space. The second example is invalid
because it includes the ! character. Lastly, the third example is invalid because it contains a
whole slew of unsupported characters. If you forget and include an invalid variable in a
PowerShell script, your script will most likely terminate with an error. For example, the fol-
lowing variable assignment statement is invalid because it contains a number of invalid
characters.

$#!,).@%& = "Winner"

If you were to try and use this variable name in a PowerShell script, the script will terminate
and display the following error.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Missing expression after ',' in pipeline element.
At C:\Users\Jerry\Desktop\x.psl:1 char:5

+ $4!, <KL).@%& = "Winner"

If you find yourself with a strong desire to include special characters within your
variable’s name, you may do so by enclosing the variable name inside matching
{} characters, as demonstrated here:

${bang#!} = "Winner"

By enclosing variable names within {} brackets, you can include an assortment
of different characters, such as #, $, %, and *, as well as periods, commas, and
even blank spaces.

Defining and Initializing Variables

Windows PowerShell supports a range of data types that correspond to data types supported
by the .NET Framework. For example, Windows PowerShell supports integers, floating-point
numbers, and strings which you can assign to variables, as demonstrated by the following:

$x =5
$y = 5.5
$z = "Winner"

Windows PowerShell automatically recognizes the first assignment shown above as an inte-
ger, the second assignment as a floating-point number, and the third assignment as a string.

I strongly recommend that you assign an initial default value to any variable that
you declare within your Windows PowerShell scripts. If a script statement at-
tempts to access a variable that has not been assigned a value, an error is not
generated. Instead, your script will keep running and you’ll end up with unpre-
dictable results.

Variable Interpolation

Up to this point in the book, all of the strings that you have seen have been placed inside
matching sets of double quotation marks. However, you are also allowed to define strings
using matching sets of single quotation marks. The difference between the two is that variable
interpolation occurs when a variable is embedded inside a string enclosed within double
quotation marks but does not occur within a string enclosed within single quotation marks.
To see how this works, consider the following example.

$x = "red"
Write-Host "The Tittle boy held on tightly to his $x balloon"

Chapter 4 « Working with Variables, Arrays, and Hashes @

When executed, the following output is displayed.
The Tittle boy held on tightly to his red balloon

As you can see, Windows PowerShell automatically substituted the value of $x when gener-
ating text output. However, if you were to rework this example by placing the string inside
single quotation marks, as shown next, variable interpolation does not occur.

$x = "red"
Write-Host 'The Tittle boy held on tightly to his $x balloon’

If you run this example, the following output will be displayed.
The Tittle boy held on tightly to his $x balloon

In most cases, using double quotes to define strings is all you will need.
Assigning Variable Values Using Expressions

You can also assign variable values using expressions. Here, the value of 1 +4 (e.g., 5) is assigned
to a variable named $x.

$x =1+ 4 # $x equals 5

In addition to the + operator, Windows PowerShell supports a wide range of arithmetic oper-
ators, as shown in Table 4.3.

[TAaBLE 4.3 WIiINDOWS POWERSHELL ARITHMETIC OPERATORS

Operator Description
& Adds two numbers together
= Subtracts one number from another
* Multiplies two numbers together
/ Divides one number from another
% Retrieves the remainder of a division operation (modulus)
G _J
Precedence

In Windows PowerShell scripting, like any other programming language, mathematic oper-
ations are executed according to a specific order of precedence, which occurs on a left to right
basis. Specifically, the - unary operator, which negates a number, is evaluated first. Next,
PowerShell performs multiplication and division and then remaindering. Finally, addition
and subtraction is performed. For example, consider the following expression.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

An expressionis a statement that is evaluated and produces a result.

$x =5*4/2*5-5%5
When executed by PowerShell, the value assigned to $x is 25, which is calculated as follows:

1. Multiplication and division occurs first so 5 *4 = 20, which is then divided by 2, resulting
in a value of 10. This value is then multiplied by 5 to get a new value of 50.

2. Since multiplication and division occur before addition and subtraction, the subtraction
operation, which appears next in the equation, is skipped and the multiplication oper-
ation at the end of the statement is executed, resulting in a value of 25.

3. Finally, 25 is subtracted from 50 to produce a value of 25.

An expression like this can be difficult to read. To help clarify things, you can use parentheses
to visually group different parts of the expression.

$x = (5 * 4/ 2*5)-(5*5)

In addition to helping to visually organize the expression, you can also use parentheses to
alter the order in which the contents of the expression are executed by overriding the order
of precedence. Take, for example, the following statement:

$x =5*4/ (2*5-5)*5

As you can see, this statement is almost identical to the previous example, except that paren-
theses have altered the order in which the expression is evaluated. As a result, the expression
evaluates to a value of 20, which is computed as follows:

1. The multiplication of 2 * 5 occurs first, resulting in a value of 10, from which 5 is then
subtracted.

2. Next, starting at the beginning of the expression, 5 is multiplied by 4, resulting in a
value of 20.

3. 20 is then divided by the value computed in the first step (e.g., 5), resulting in a value of
4. 4 is then multiplied by the last number in the expression, resulting in a value of 20.

Two arithmetic operators (+ and *) are overloaded, allowing them to work for
strings as well as numbers. Thus, as you have already seen, you can use the +
operator to concatenate two strings together. You can also use the * operator
torepeatastring a specified number of times as was demonstrated earlierin this
chapter.

Chapter 4 « Working with Variables, Arrays, and Hashes @

PowerShell Assignment Operators

Up to this point in the book, you have seen the equal (=) operator used to make all assignments.
However, Windows PowerShell supports a host of different assignment operators, as shown
in Table 4.4.

TaBLE 4.4 WINDOWS POWERSHELL AsSIGNMENT OPERATORS

Operator Description

= Assigns a value to a variable

+= Adds a value to a variable

-= Subtracts a value from a variable

= Multiplies a variable value

= Divides a variable value

%= Assigns the remainder of a division

As an example of how to work with these operators, consider the following example.

$x =5
$x +=5

Here, the value of $x is set equal to 5 and then incremented by 5, resulting in a final value
of 10.

In addition to the assignment operators shown in Table 4.4, Windows PowerShell also sup-
ports two additional operators that you can use to automatically increment and decrement
the value of a variable by 1.

e ++ Automatically increments a value by 1.

e —= Automatically decrements a value by 1.
As an example of how these two operators work, consider the following statements.

$x =5
$y = $x+t

In the previous example, $x++is functionally equivalent to $x = $x + 1.

Here, a variable named $x is set equal to 5. Next, a variable named $y is assigned the value
assigned to $x, after $x is incremented by 1. Thus $y ends up assigned a value of 6.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Special Variables

Windows PowerShell provides you with access to a number of variables that are always avail-
able toyour PowerShell scripts. These variables provide access to commonly used information.
By making references to these special variables, you save yourself the effort of having to create
and maintain your own version of these variables. Table 4.5 lists a number of commonly used
special variables.

TABLE 4.5 WINDOWS POWERSHELL SPECIAL VARIABLES

Special Character Description
$_ Represents the current pipeline object whenusedinscriptblocks suchas the
Foreach-Object and the Where-0bject blocks
$Error Provides access to information about recent errors
$HOME Represents the home directory of the current user
$PSHome The name of the folder where Windows PowerShell is installed
$null Represents a null object
G g

You have seen the $_ special variable used a couple times already in this book. As another
example of how to use Windows PowerShell’s special variables, consider the following
example:

Set-Location $home
$x = Get-ChildItem
$x

When executed, this example changes the current working directory to the home directory

of the person that runs the script and then assigns a list of all contents of that folder to a
variable named $x.

To view a listing of all Windows PowerShell’s special variables and see their
definitions, use the Get-Help cmdlet and pass it an argument of
about_automatic_variables, as shown here:

Get-Help about_automatic_variables

Variable Scope

Within Windows PowerShell scripts, variable access depends on the location at which a vari-
able is defined. Within Windows PowerShell, access is governed by scope. PowerShell supports
four different scopes, each of which can be referenced by one of the following labels.

Chapter 4 « Working with Variables, Arrays, and Hashes

* Local scope. Refers to the current scope, which can be global, private, or script.
* Global scope. A scope that is established whenever a new PowerShell session is started.
» Private scope. A scope that is not visible or accessible to other scopes.

* Script scope. A scope that is established whenever a script is executed and which ends
when the script stops executing.

Whenever you start up a new Windows PowerShell session, you establish a global scope. Any
variable created from the command prompt during the current session is global in scope.
Global variables can be accessed from within the current scope (e.g., from the command line
as well as from child scopes). When you execute a PowerShell script, a new script scope is
created. This scope is a child scope to the global scope.

Variables defined within your PowerShell scripts (outside of any functions) are local variables
and can be accessed from anywhere within the script. Within the PowerShell script, you can
define functions in order to improve the overall organization of the script and to further
refine scope. Variables defined within a function are local to the function and the function’s
scope is a child scope of the script’s script scope.

A function is a collection of statements that can be called upon to execute
as a unit. Functions are covered later in Chapter 7, “Organizing Scripts Using
Functions.”

By default, variables created in a child scope can be seen and accessed in a parent scope, unless
the variables are defined as private, in which case the variables can only be accessed from
within their own scope.

So far all of the variables that you have worked with in this book’s PowerShell game scripts
have been local in scope and as such have been accessible throughout the entire script. How-
ever, as you will see in Chapter 7, you can define variables within functions and mark them
as private, limiting access to just within the function itself.

Arrays

As has been already stated, variables can be used to store numbers, strings, and objects of any
type. Variables can also be used to store arrays. An array is an indexed list of values. Each
element stored in an array is assigned a unique numeric index number, which can later be
used to retrieve its value. In Windows PowerShell, array indexes start at zero, so the first
element in an array has an index of 0 and the second element has an index of 1 and so on.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Creating an Array
You can create a new empty array by assigning a comma-separated list of values to a variable
as demonstrated here:

$names = "Alexander", "William", "Molly"

Once created, you can refer to any array element by referencing its index number, as demon-
strated here:

Write-Host $names[2] "is a great kid."

In this example, $x is assigned a value of Mo11y. Because arrays are indexed, you can process
all the elements stored in an array using a loop. You will find examples of how to do this in
Chapter 6, “Using Loops to Process Data.”

In addition to referencing array elements by their index number, Windows
PowerShell also allows you to use negative numbers to reference the elements
storedattheendofanarray.Anindexvalue of —| wouldrefertothelastelements
storedinthearray; avalue of =2 would represent the second to last elementand
soon.

Ifyou create an array made up of numeric data, as demonstrated here, you can omit enclosing
array elements inside matching quotations marks.

$numbers = @(1, 2, 3, 4, 5)
Write-Host $numbers

Here, an array named $numbers has been defined and populated with five numeric values.
Note that in this example, the array is created using a different format than was done in the
preceding example. Instead of creating the array as a comma-separated list of values, the array
in this example is created using the @ character and the elements assigned to the array are
provided as a comma-separated list enclosed inside matching parentheses. When executed,
this example produces the following output.

12345

Which of these two formats you choose to use when formulating arrays is up to you. In this
book, the latter format is used as it helps to make arrays stand out, arguably making them
easier to identify and work with.

If youwant, you can use the range operator (. .) to populate an array with a range
of values. For example, the following statement can be used to create an array
named $numbers and assignitl, 2, 3, 4, 5asitsinitial elements.

$numbers = @(1..5)

Chapter 4 « Working with Variables, Arrays, and Hashes

Modifying Element Values
You can modify the value of any element in an array by specifying its index number, as
demonstrated by the following.

$numbers = @(1, 2, 3, 4, 5)
$numbers[2] = 9
$numbers

When executed, this example produces the following output.

ol B O NN

As you can see, the value stored in the array’s third element, has been changed to 9. (Remem-
ber that array indexes begin at 0 and not 1.)

Keeping Track of Array Size
Arrays have a Count property that you can use to determine the number of elements in an
array, as demonstrated here:

$names = @("Alexander", "William", "Molly")
$total $names.Count
$total

When executed, $total is assigned a value of 3.

Arrays also have a Tength property that you can use to retrieve the number of
elements in an array, as demonstrated here:

$names = @("Alexander", "WiTlliam", "Molly")
$total = $names.Length
$total

Combining Arrays
Windows PowerShell also allows you to combine two or more arrays to create a new larger
array using the + operator, as demonstrated by the following.

$TowNumbers = @(1, 2, 3)
$highNumbers= @(4, 5, 6)

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$numbers = $1owNumbers + $highNumbers

$numbers

In this example, two arrays named $1owNumbers and $highNumbers have been defined. Then
using the + operator, these two arrays are combined to create a new array named $numbers,
whose elements are 1, 2, 3, 4, 5, and 6.

Deleting and Inserting Array Elements

There is no direct way to insert an element into a particular location in an array. However,
using the range operator and the + operator, you can work around this shortcoming, as
demonstrated here:

$numbers = @(1, 2, 3, 4, 5, 6, 7)
$numbers = $numbers[0..2 + 4..6]
$numbers

In this example, the first statement defines an array named $numbers and assigns it a range
of values. The second statement reassigns the contents of the $numbers array by using the
range operator and the + operator to generate a new list of elements consisting of the first
three and last three elements in the original array. When executed, this example produces
the following output.

~N o o1 W N =

There is no direct way to insert an element into the beginning or middle of an array either.
However, by adapting the technique demonstrated above, you can insert a number at any
given location within an array, as demonstrated here:

$numbers = @(1, 2, 3, 4, 5, 6, 7)
$numbers = $numbers[0..3] + 99 + $numbers[4..6]
$numbers

In this example, the number 99 is inserted into the middle of the array.

Chapter 4 « Working with Variables, Arrays, and Hashes

Associative Arrays

One shortcoming of arrays is that as they grow bigger it becomes difficult to keep track of
where individual array elements are stored. As a result, to find a given value, you usually have
to set up a loop to search the array, examining every element in order to find the one you
want. An associative array, sometimes referred to as a hash or dictionary, provides a more effi-
cient and faster alternative, allowing you to store data in key-value pairs.

Creating an Associative Array
One way to create an associative array is to define it as an empty associative array, as demon-
strated here:

$ids = @{}

As you can see, the variable used to store the hash is just a regular variable, and the empty
hash table is represented by @{ }.

Once defined, you can add as many key-value pairs to it as necessary, as demonstrated by the
following.

$1ds[12345] = "William"
$1ds[23456] = "Alexander”
$i1ds[34567] = "Molly"
$1ds[22334] = "Mary"
$ids[55555] = "Jerry"

Each of these statements adds a new entry into the associative array. The value specified inside
the brackets is the key and the value specified to the right-hand side of the equals sign is the
value.

Accessing Data Stored in Associative Arrays
Once created and populated with data, you can retrieve a value from the associative array, as
demonstrated here:

$x= $ids[345671]

Here, a value of Molly is retrieved from the associative array and assigned to a variable
named $x.

Associative arrays can be used to store any amount of data. Associative array keys and values
can be of any length. Associative array elements are stored as values and must be enclosed
inside quotation marks if they contain blank spaces. Stored values are retrieved by referencing
their associated key. Associated arrays can store any type of data. Data retrieval from asso-
ciative arrays is relatively fast and does not increase as more values are added.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Populating Associative Arrays at Creation Time
Associative arrays can also be populated at creation time, as demonstrated here:

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Mighty-One"}
$x = $nicknames["Alexander"]

Asyou can see, three separate key-value pairs have been defined. Key-value pairs are separated
by semicolons and enclosed inside matching brackets and preceded by the @ character. When
executed, $x is assigned a value of Alexander.

If you want, you can display the contents of an associative array from within your PowerShell
scripts, as demonstrated by the following.

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Mighty-One"}
$nicknames

When executed, this example will produce the following output.

Name Value
Alexander X-Man
Molly Mighty-One
William William-D

Like arrays, you can combine the contents of associative arrays using the + op-
erator, as demonstrated here:

$kidNames = @{Alexander = "X-Man"; William = "William-D"; Molly =
"Mighty-One"}
$parentNames = @{Jerry = "Daddy"; Mary = "Mommy"}

$familyNames = $kidNames + $parentNames

$familyNames

When executed, this example produces the following output.

Name Value
William William-D
Alexander X-Man
Jderry Daddy
Molly Mighty-One

Mary Mommy

Chapter 4 « Working with Variables, Arrays, and Hashes

Deleting a Key-Value Pair
Associative arrays provide you with access to methods that allow you to manipulate their
contents. For example, you can remove an entry from an associative array using the Remove
method, as demonstrated here:

$nicknames = @{Alexander = "X-Man"; William = "William-D"; Molly = "Mighty-One"}
$nicknames.Remove("Alexander")
$nicknames

When executed, this example will produce the following output.

Name Value
Molly Mighty-One
William William-D

Removing Associative Array Contents
Using the C1ear method, you can remove the contents of an associative array, as demonstrated
by the following.

$nicknames.Clear()

To Llearn more about hashes, use the Get-Help cmdlet to Llook up
about_Associative_Array.

BAck TO THE SEINFELD TRIVIA Quiz

Okay, let’s turn our attention back to the development of this chapter's main game project,
the Seinfeld Trivia Quiz. The development of this game will demonstrate how to create an
interactive online quiz that presents the player with a series of questions that are then ana-
lyzed and graded. The primary point of focus for you as you create this game should be on
the use of variables to store and interrogate data collected from the player. In addition, you
should take note of the use of Windows PowerShell escape characters in the generation of
display output.

Designing the Game

The Seinfeld Trivia Quiz will begin by displaying a welcome screen and then displaying
instructions for taking the quiz. Next, it will present a series of five multiple-choice questions.
The game should validate player answers for each question before accepting them and store

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

each answer for later analysis. Once the player has finished taking the quiz, the player’s
answers should be graded and a ranking should be assigned to the player based on how well
she did.

The overall steps involved in developing the Seinfeld Trivia Quiz are outlined here:

1. Create a new script file and add opening comment statements.

2. Define variables used in the script to store player answers and keep track of the number
of correctly answered questions.

. Display a welcome screen.

. Display instructions for gameplay and explain the grading scale.

. Present the player with the first quiz question.

. Display the rest of the quiz questions.

. Let the player know when all questions have been answered.

. Analyze the answers provided for each quiz question.

. Assign a ranking based on the number of correctly answered questions.

10. Thank the player for taking time to take the quiz.

O 00 g O Ul b W

Creating a New Script
The first step is creating a new PowerShell file named SeinfeldTrivia.ps1 and adding the fol-
lowing statements to it.

kkkkhkkkkkkhkkhkkhkhkhkhkhkhkkkhkhhhkhkhkhkhhhhhkkhkhkhkhhkhkhkhhhhkhhkkhkhkhkhkhkhkkkhkhhkhhhkrkhkkhhkhkhkhkkkhkhkxkkx

#

Script Name: SeinfeldTrivia.psl (The Seinfield Trivia Quiz)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 6, 2008

#

Description: This PowerShell script tests the player's knowledge
i of Seinfeld trivia through the administration of

a computer quiz made up of 5 questions.

#

khkkkhkkhkhkhkkhkhkhkhkhkhkhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhhhhhhhhhhhhhhhhhirk

f#C1ear the Windows command console screen
Clear-Host

Chapter 4 « Working with Variables, Arrays, and Hashes

As with previous game scripts, this script file has been generated using the Windows
PowerShell template that was developed back in Chapter 2, “Interacting with the Windows
PowerShell Command Line.” In addition, the script’s first statement has been added, which
executes the Clear-Host cmdlet in order to clear the display area of the Windows command
console.

Defining and Initializing Variables

The next step in the creation of the Seinfeld Trivia Quiz is to define variables used throughout
the script and to assign their initial values. This is accomplished by adding the following
statements to the end of the PowerShell script file.

#Define the variables used in this script to store player answers
$questionl = ""

$question2
$question3 = ""
$questiond = ""
$questionb

fiDefine a variable to keep track of the number of correctly answered
ffquiz questions
$noCorrect = 0

The first set of statements shown above defines five variables that will be used to store answers
provided by the player in response to quiz questions. The last statement defines a variable
named $noCorrect, which will be used to keep track of the number of questions that the player
answers correctly.

Displaying the Welcome Screen

The next step in the development of the Seinfeld Trivia Quiz is the display of the game’s
welcome screen. This is accomplished by appending the following statements to the end of
the script file.

#Display the game's opening screen

Write-Host ""n'n'n'n"t"t WELCOME TO THE SEINFELD"
Write-Host ""n'n'n't 't t TRIVIA QuIz"

Write-Host ""n'n'nt't't By Jerry Lee Ford, Jr."

Write-Host "“n'n"nn"n'n"n n'n'n Press Enter to continue."

ffPause script execution and wait for the player to press the Enter key
Read-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, the game’s welcome screen is created using a series of Write-Host cmdlets. In
order to control the string formatting, a series of escape characters has been embedded within
each statement. Specifically, instances of the “n escape character have been added to generate
newline commands, and the "t escape character has been used to insert tab commands. The
last statement shown above uses the Read-Host cmdlet to pause script execution until the
player presses the Enter key.

Displaying Instructions

After reading and dismissing the game’s welcome screen, instructions for taking the quiz and
an explanation of its ranking system need to be displayed. This is accomplished by appending
the following statements to the end of the script file.

f#C1ear the Windows command console screen
Clear-Host

#Provide the player with instructions

Write-Host ""n'n The Seinfeld Trivia Quiz tests your knowledge of Seinfeld ' n"
Write-Host " trivia. The quiz consists of five equally weighted multiple™n"
Write-Host " choice questions. At the end of the quiz your answers will'n"
Write-Host " be checked and you will be assigned a skill level, using™n"
Write-Host " the following scale. n'n"

Write-Host " “t Score: b5 correct = Jerry (Expert)"
Write-Host " “t°t 4 correct = Kramer"

Write-Host " “t°t 3 correct = Elaine"”

Write-Host " "t°t 2 correct = George"

Write-Host " “t°t 1 correct = Newman"

Write-Host " “t°t 0 correct = Babo (Clueless)"

Write-Host ""n"n'n'n Press Enter to continue."

f#Pause script execution and wait for the player to press the Enter key
Read-Host

The statements shown above clear the screen and display text output using a series of
Write-Host cmdlets. The script is then paused using the Read-Host cmdlet, forcing the player
to press the Enter key in order to continue the quiz.

Displaying the First Quiz Question
The next step in the creation of the Seinfeld Trivia Quiz is the presentation of the first quiz
question and the collection of the player’s answer. The code statements required to present

Chapter 4 « Working with Variables, Arrays, and Hashes

the game’s first question are outlined next and should be appended to the end of the script
file.

f#Ask the player the first question
while (($questionl -ne "a") -and ($questionl -ne "b") °
-and ($questionl -ne "c") -and ($questionl -ne "d")) {

Clear-Host #Clear the Windows command console screen

Write-Host

Write-Host " What is Kramer's first name?"
Write-Host

Write-Host " A. Peterman"

Write-Host " B. Cosmo"

Write-Host " C. Puddy"

Write-Host " D. Peck"

Write-Host

$questionl = Read-Host " Type the letter representing the correct" °
" answer and press the Enter key"

}

The overall logic of this portion of the script file is controlled by a while loop. Within the
while loop, the Read-Host cmdlet is used to prompt the player to provide an answer to the first
quiz question. The player’s answer is stored in a variable named $questionl. The loop is set
up to execute until the player submits a valid answer to the first quiz question. Valid answers
are a, A, b, B, ¢, C, d, or D. (Remember, by default Windows PowerShell is not case-sensitive.)
If the player provides a valid answer, the loop stops executing and the script continues run-
ning. However, if the player fails to provide a valid response, the loop repeats itself, prompting
the player to answer the question.

The logic that makes up this portion of the script file consists of a number of
programming statements that are not formally introduced until Chapters 5 and
6. Since this book has not yet covered these programming constructs, | will not
cover them in detail now. These statements require the implementation of con-
ditional and looping logic. For now, to make things a little easier to understand,
| have added numerous comment statements to document what is occurring in
this portion of the script file and | suggest that you return and review this portion
of the script file once you have read Chapters 5 and 6.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Displaying the Remaining Quiz Questions
The statements that present the next four quiz questions and collect the player’s answers are
presented below and should be appended to the end of the script file.

#Clear the Windows command console screen
Clear-Host

#Ask the player the second question
while (($question2 -ne "a") -and ($questionZ -ne "b") °

-and ($question2 -ne "c") -and ($question2 -ne "d")) {

Clear-Host {Clear the Windows command console screen

Write-Host

Write-Host " What was George's favorite pretend career?”
Write-Host

Write-Host " A. Bra salesman"

Write-Host " B. Real estate"

Write-Host " C. City planner"

Write-Host " D. Architect"”

Write-Host

$question2 = Read-Host " Type the letter representing the correct" °

"answer and press the Enter key

#Clear the Windows command console screen

Clear-Host

#Ask the player the third question

while (($question3 -ne "a") -and ($question3 -ne "b") °
-and ($question3 -ne "c") -and ($question3 -ne "d")) {

Clear-Host {Clear the Windows command console screen
Write-Host

Write-Host " For whom did Elaine buy white socks?"
Write-Host

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
$question3

Chapter 4 « Working with Variables, Arrays, and Hashes @

A. Mr. Lippman"
B. Mr. Peterman"
C. Mr. Pitt"

D. Puddy"

Read-Host " Type the letter representing the correct" °

"answer and press the Enter key"

#Clear the Windows command console screen

Clear-Host

#Ask the player the fourth question
while (($question4 -ne "a") -and ($questiond -ne "b") °

-and ($questiond -ne "c") -and ($questiond -ne "d")) {

Clear-Host {Clear the Windows command console screen

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
$questiond

What is Kramer scared of?"

Swimming"
Fried Chicken"
Clowns"

The dentist"”

O O W >

Read-Host " Type the Tetter representing the correct" °

"answer and press the Enter key"

f#C1ear the Windows command console screen

Clear-Host

f#Ask the player the fifth question

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

while (($question5 -ne "

a") -and ($question5 -ne "b") °
-and ($questiond -ne "c

)
) -and ($question5 -ne "d")) {

Clear-Host {Clear the Windows command console screen

Write-Host

Write-Host " Where do Jerry's parents live?"
Write-Host

Write-Host " A. Kansas"

Write-Host " B. New York"

Write-Host " C. California"

Write-Host " D. Florida"

Write-Host

$questiond = Read-Host " Type the letter representing the correct" °
"answer and press the Enter key"

As you can see, the presentation of the remaining quiz questions follows the same pattern as
the first question, except for variations in the text strings that are displayed.

Let the Player Know the Quiz Is Complete

Once the player has finished answering each of the quiz’s five questions, the script should
pause to let the player know that the quiz will now be graded. This is accomplished by adding
the following statements to the end of the script file.

#Clear the Windows command console screen
Clear-Host

Write-Host
Write-Host " OK, now press the Enter key to see how you did."

#fPause script execution and wait for the player to press the Enter key
Read-Host

As you can see, these statements use the Clear-Host cmdlet to clear the Windows command
console screen, the Write-Host cmdlet to display text, and the Read-Host cmdlet to pause script
execution until the player presses the Enter key.

Chapter 4 « Working with Variables, Arrays, and Hashes @

Analyzing Player Answers

At this point, it is time to analyze each answer provided by the player to determine if it is
right or wrong. This is accomplished by appending the following statements to the end of the
script file.

f#iC1ear the Windows command console screen
Clear-Host

ffarade the answers for each quiz question

if ($questionl -eq "b") { $noCorrect++ } {#The answer to question 1 is "B"
if ($question2 -eq "d") { $noCorrect++ } #The answer to question 2 is "D"
if ($question3 -eq "c") { $noCorrect++ } {The answer to question 3 is "C"
if ($questiond -eq "c") { $noCorrect++ } #The answer to question 4 is "C"
if ($question5 -eq "d") { $noCorrect++ } {#The answer to question 5 is "D"

Each of the five i f statements shown above is designed to address one of the quiz’s questions.
The first statement examines the player’s first answer, which is stored in $questionl, to see
ifitis equal to b. If it is, the value of the variable named $noCorrect is incremented by 1 using
the ++ operator. The next four if statements are set up to analyze the player’s answers to the
remaining quiz questions.

Assigning a Ranking

Once the number of correctly answered quiz questions has been tabulated, the script needs
to assign the player a ranking based on the resulting value. Specifically, the ranking assign-
ment is made by comparing the value of $noCorrect to the values outlined in Table 4.6.

" TABLE 4.6 RANK ASSIGNMENTS FOR THE SEINFELD TRIVIA Quiz

Assignment Description
Babo Zero correct answers
Newman One correct answer
George Two correct answers
Elaine Three correct answers
Kramer Four correct answers
Jerry Five correct answers
A\ _d

f#Assign a ranking based on quiz score
if ($noCorrect -eq 0) {
Write-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host " You did not get any questions correct.”
Write-Host
Write-Host " Your knowledge of Seinfeld trivia is no better than Babo's."

if ($noCorrect -eq 1) {

Write-Host

Write-Host " You got 1 question correct.”

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is no better than" °
"Newman's."

if ($noCorrect -eq 2) {
Write-Host
Write-Host " You got 2 questions correct.”
Write-Host
Write-Host " Your knowledge of Seinfeld trivia is approximately that" °
"of George's."

if ($noCorrect -eq 3) {

Write-Host

Write-Host " You got 3 questions correct."”

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is approximately that" °
"of Elaine's."

if ($noCorrect -eq 4) {

Write-Host

Write-Host " You got 4 questions correct."

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is about as good as" °
"Kramer's."

if ($noCorrect -eq 5) {

Chapter 4 « Working with Variables, Arrays, and Hashes @

Write-Host

Write-Host " You got 5 questions correct."”

Write-Host

Write-Host " Your knowledge of Seinfeld trivia is every bit as good" °
"as Jerry's."

#Pause script execution and wait for the player to press the Enter key
Read-Host

The value of $noCorrect can only be equal to one of the values outlined in the five if state-
ments outlined above. The matching if statement displays a series of text strings showing
how many questions the player correctly answered and the ranking assigned as a result. The
code statements embedded within the four non-matching if statements are ignored and
never executed.

Finishing the Quiz

Once gameplay has been finished, the Seinfeld Trivia Quiz ends by thanking the player for
taking the time to complete the quiz. This is accomplished by adding the following statements
to the end of the script file.

f#fC1ear the Windows command console screen
Clear-Host

fiProvide the player with instructions
Write-Host
Write-Host " Thanks for taking the Seinfeld Trivia Quiz!"

#Pause script execution and wait for the player to press the Enter key
Read-Host

#Clear the Windows command console screen
Clear-Host

The player dismisses this screen by pressing the Enter key. The Windows command console
screen is then cleared and the script file stops executing.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The Final Result

Okay, this should be everything you need to finish the development of the Seinfeld Trivia
Quiz. Assuming that you have not made any typos when keying in the script file, everything
should work as expected. In the event that an error does occur, then you have made a typo or
two somewhere in the script file. In order to track down your errors, begin by analyzing the
error message that was displayed when you tried to run your script. Hopefully, there will be
enough information provided to help you track down the error. It may be that you made a
typo or left out a statement somewhere along the way when keying in the script’s statements.
If your script file contains more than one error, you may have to go through several iterations
before you eliminate all your errors.

SUMMARY

This chapter showed you how to store, retrieve, and modify data. You learned how to work
with variables, arrays, and hashes. You also learned how to work with special built-in Windows
PowerShell variables. You learned how to work with the -Replace operator to perform string
substitution operations and the Range operator to generate a list of values. In addition, you
learned how to concatenate strings, variables, and hashes. You also learned how to use Win-
dows PowerShell escape characters to streamline and control the formatting of text output.
Lastly, you learned how to create a new Windows PowerShell computer game, the Seinfeld
Trivia Quiz.

Before you move on to the next chapter, take a few minutes to improve the Seinfeld Trivia
Quiz by completing the following list of challenges.

CHALLENGES

I. Currently, the Seinfeld Trivia Quiz is limited to five questions.
Make the quiz more challenging by adding questions of your
own.

2. Ratherthanlimitingthe quiztojust multiple-choice questions,
add differently formatted questions,suchas true/falseandfill
in the blank.

3. As currently written, the game displays the number of quiz
questions that the player correctly answered. However,
additional detail regarding question results would provide the
player with better feedback. Consider displaying a report at
the end of the game that displays each question, the player’s
answer, and the correct answer.

(cHAPTER)

IMPLEMENTING
ConbDpiTIoNAL Loaic

he Windows PowerShell scripting language, just like every programming

language, includes language statements that provide the ability to test

and evaluate different conditions. Conditional logic is a fundamental
component of programming logic, and it is all but impossible to develop a
PowerShell script of any level of complexity without using it. Conditional logic
facilitates the evaluation of user, system, and file input against each other and
against system resources. Based on the results of conditional tests, your PowerShell
scripts can exercise tight control over which statements are executed, thus creat-
ing create dynamic scripts that adjust their execution according to the data they
encounter.

Specifically, you will learn how to:

* Implement conditional logic using variations of the if statement
* Embed if statements inside one another to build more complex logic

e Use the switch statement to create logical tests that evaluate multiple
conditions

* Work with different types of comparison and logical operators

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJecT PrReviEw: THE GUEss My NuMBER GAME

In this chapter, you will learn how to create a new Windows PowerShell game called the Guess
My Number game. This game will challenge the player to guess a randomly generated number
in the range of 1 to 100 in as few tries as possible. As Figure 5.1 shows, the game begins by
displaying a welcome screen.

25 Windows PowerShell —lo] =|

WELGCUOHRE T0O THE GUESS Ly 4
NUREER GHHAE

By Jerry Lee Ford. Jr.

The opening
screen for the
Guess My Number Press Enter to continue. __J
game.

The player dismisses the welcome screen by pressing the Enter key. Next, the game displays
the message shown in Figure 5.2, prompting the player to make an initial guess.

22 Windows PowerShell _ ol x|
o
Enter a number between 1 and 188: j
The game
generates random
numbers in the &l
range of | to 100.

After each guess, the game analyzes the player’s input to see if it was too high, too low, or if
the player correctly guessed the game’s secret number. Figure 5.3 shows the message dis-
played by the game when the player’s guess is too low.

Chapter 5 « Implementing Conditional Logic

25 Windows PowerShell — o] =|
-
Sorry. Your guess was too low. Press Enter to guess again. j
The game provides
the player with
clues that assistin
&l homingin on the
secret number.

The game congratulates the player once the secret number is finally guessed, as demonstrated
in Figure 54.

25 Windows PowerShell —lo] =|
-
Congratulations. You guessed my number? Press Enter to continue. j
FIGURE 5.4
The player has
&l guessedthesecret
number.

Next, game statistics are displayed that remind the player of the value of the secret number
and then shows how many guesses it took before the player was able to guess it, as demon-
strated in Figure 5.5.

After pressing the Enter key to dismiss the display of game statistics, the game invites the
player to play another round, as shown in Figure 5.6.

If the player enters Y, a new round of play is started. If the player enters N, the game ends and
the player is returned to the Windows PowerShell command prompt. Any other input is
rejected and the player is again prompted to make a decision as to whether to continue

playing.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

25 Windows PowerShell — o] =|

-
Game Statistics j

The secret numher was: 5.

You guessed it in 6 guesses.

The game keeps
track of player
guesses and
presents a
summary of
activity at the end

of each round of Press Enter to continue. __J
play.

2= Windows PowerShell B [=1 T |

-

Would you like to play again? {¥~H> = j

Theplayercanplay
as many rounds as
she wishes
without having to El
restart the game.

COMPARING VALUES

Windows PowerShell provides the ability to compare different resources, such as numbers
and strings. To demonstrate this ability, start a new PowerShell session and enter 5 -eq 5
and press Enter, as demonstrated below.

PS C:\> 5 -eq b
True

-eq is the PowerShell equals operator and is used in this example to determine whether two
numbers are equal. Once evaluated, Windows PowerShell displays the result of its evaluation
in the form of a Boolean true or false value. All comparison operations evaluate to a value of
true or false. The next example demonstrates the results returned from the comparison
between two unequal values.

Chapter 5 « Implementing Conditional Logic

PS C:\> 5 -eq 10
False

You can also compare different types of values such as strings and numbers, as demonstrated
by the following.

PS C:\> 5 -eq "X"
False

In order to perform this evaluation, Windows PowerShell has to convert the values being
compared to the same type. When faced with this situation, PowerShell attempts to convert
the second value to the same type as the first value. A good example of how this type of
conversion can result in a true value is provided here:

PS C:\> 5 -eq "5"
True

In this example, PowerShell converted the string "5" to its numeric equivalent. Windows
PowerShell allows you to compare expressions of various levels of complexity, as demon-
strated here:

PSC:\>5+7 -eq3+3+3+3
True

Once executed, the value of the expression on the left side of the operator evaluates to 12 as
does the value of the expression on the right-hand operator.

If you find yourself working from the Windows PowerShell command line and
in need of doing a quick calculation or two, there is no need to stop what you are
doing just so you can open up the calculator application and crunch a few num-
bers. Instead, you can save yourself a little time by using Windows PowerShell
as your calculator. For example, if all you need it to do is multiply a couple num-
bers, just type them in using the appropriate PowerShell arithmetic operator, as
demonstrated here:

PS C:\> 5 *5
25
PS C:\>

Here, the expression 5 * 5 has been typed in at the PowerShell command
prompt. When the Enter key is pressed, PowerShell resolves the expression and
displays the result. As the following example demonstrates, you can key in more
complex mathematic expressions if need be.

PS C:\> 20 * 5/ (10 + 15) * 3

12

PS C:\>

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

CoMBINING PIPELINES AND OPERATORS

In addition to comparing strings and numbers, you can compare object data against different
values as it passes through the PowerShell object pipeline. This allows you to select the data
that you want to continue sending through the pipeline, thus discarding the data you do not
need to process. For example, using the -eq operator, you can pull out the name of any cur-
rently executing processes, as demonstrated here:

PS C:\> Get-Process | Where-Object {$_.Processname -eq "Winword"}

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName
237 11 7540 18992 110 5,286.61 1620 WINWORD
PS C:\>

Asyou can see, the Get-Process cmdlet has been executed. It generates a list of active processes
running on the computer. This list is then piped to the Where-0bject cmdlet, which evaluates
each process looking for one named Winword. If found, information about the process is dis-
played.

This type of evaluation is not limited to just the Get-Process cmdlet. It can be applied to the
output of any cmdlet. For example, this next set of statements processes the output generated
by the Get-ChildItem cmdlet, looking for a particular folder.

PS C:\> Get-ChildItem | Where-Object {$_.Name -eq "MyScript"}

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
d---- 3/28/2006 1:56 PM MyScripts
PS C:\>

IMPLEMENTING CONDITIONAL LoGic

Comparison operations are a critical feature of PowerShell scripting and are required in all
but the simplest PowerShell scripts. However, to be useful, you need to include comparisons
as part of conditional statements. Windows PowerShell supports two different conditional
logic statements, as outlined below.

Chapter 5 « Implementing Conditional Logic

» if. This statement evaluates a comparison and then executes or skips the execution of
statements located in an associated code block.

* switch. This statement supports the execution of multiple comparison operations, each
of which has the ability to execute statements embedded inside associated code blocks.

Comparing Data Using the if Statement

The if statement is used to test the value of a condition and to conditionally execute state-
ments located in an associated code block based on the results of that evaluation. You have
already seen the if statement in action on numerous occasions in this book. Its syntax is
outlined here:

if (condition) {code block}
elseif (condition) {code block}

else {code block}

condition is a placeholder representing an expression that evaluates to a Boolean value of
true or false. code block is a placeholder representing any number of statements that are
executed based on the results of the test. The if statement is very flexible and supports a
number of different variations.

elseif is an optional statement that you can include to test an alternative condition. Win-
dows PowerShell allows you to include as many elseif statements as you want. e/se is also
an optional statement that when added executes its associated control block whenever none
of the preceding conditional tests evaluate as being true.

The if, elseif, and else statements let you execute statements stored in code blocks based
on the evaluation of a test, such as a variable, pipeline object, or an expression. If you create
an if statement that contains multiple elseif evaluations, the code block belonging to the
first test that evaluates to true is executed and the remaining statements in the if statement
are skipped.

Formulating if Statements

To help you understand the basic concept behind the if statement, let’s look at an example.
Suppose you had trouble remembering to pay the rent, which is due on the 15™ of every
month. To help remind yourself, you might add a few lines of code to a PowerShell script that
you run every day that checks the date and displays a message if it is the 15th of the month.
In plain English, the logic required to develop this new logic is outlined here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Get the date
if (Today is the 15th of the month)
{
It is time to pay rent
}
else
{
It is ok to go out to eat
}

As you can see, this pseudocode of an if statement very clearly outlines the logic involved
using a combination of English and if statement syntax. To help highlight key syntactical
elements, [have bolded key elements that make up the statements.

Pseudocodeis a term used to describe an English-like outline or sketch of some
orall of the programming logicrequired to developascript. By outlining the logic
required to develop a script using pseudocode, programmers provide them-
selves with aroadmap that helps to guide the overall design of their scripts. This
helps ensure that you know what you are going to do before you start doing it
and can be used to help prevent errors and delays that can occur when you start
working without a plan.

Using this pseudocode outline as a guide, you can then translate the English-like statements
into PowerShell statements as shown here:

$today = Get-Date

if ($today.day -eq 15)
{
Write-Host "Remember to pay the rent today."
}
else
{
Write-Host "It is OK to go out to eat!"
}

In this example, a variable named $today is assigned a value representing the current date,
which is retrieved by executing the Get-Date cmdlet. Next, an if statement has been set up
that evaluates the expression $today.day -eq 15.The first part of this expression retrieves the
day property associated with the current date. This value is then compared to a value of 15 to

Chapter 5 « Implementing Conditional Logic

see if the two values are equal. If they are, the statement stored in the if statement’s code
block is executed. If these two values are not equal, the statement embedded in the optional
else statement’s code block is executed.

Single Line if Statements
In its simplest form, the if statement consists of a single statement:

if ($x -eq 10) {Write-Host "Game over!"}

In this example, the value of $x is tested to see if it is equal to 10. If this text evaluates to true,
the Write-Host cmdlet located inside the if statement’s code block is executed. This form of
the if statement is best applied to simple conditional tests that contain a single statement
in their code block. For situations where more than one statement must be executed inside
the code block, the multiline form of the if statements should be used.

Multiline if Statements
Often, you will want to execute a number of statements based on the evaluation of a condi-
tional test. In these situations, you can apply an if statement, as demonstrated here:

if ($x -eq 10) {
Clear-Host
Write-Host "Game over! Press Enter to continue."
Read-Host

}

As this example demonstrates, you can embed any number of statements in an i f statement’s
code block. In this example, if the value of $x is equal to 10, all of the statements inside the
code block’s opening and closing brackets are executed. If, however, the value of $x is not
equal to 10, the statements located inside the code block are skipped.

Providing an Alternative Course of Action

The if statement is extremely flexible. By including an optional else statement, you can add
additional logic that provides for an alternative course of action in the event the tested con-
dition evaluates as false. For example, you might use the else statement to modify the
previous example, as shown here:

if ($x -eq 10) {
Clear-Host
Write-Host "Game over! Press Enter to continue."
Read-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

else {
Clear-Host
Write-Host "Press Enter to try again."”
Read-Host

}

Figure 5.7 provides a flowchart overview of the logic implemented in the previous example.

Bagin
Conditional
Test

True False

if §x —eq 10

FIGURE 5.7 Clear Host Clear Host

A depiction of the Nisplay-Host "Game over! Press Fnter to canfinue.” Nisplay-Host "Press Fnter to try again."

logicinvolvedinan Hearid: o] Read-Hosl
if statement.

A flowchartis a tool used by programmers to graphically depict the Llogical flow
ofallorpartofascript.By creatingaflowchart, you canvisually layout the overall
Llogical flow of your PowerShell scripts. Once created, you can use a flowchart
to help guide the development of the script.

Testing Different Conditions

The if statement can also be expanded by including one or more optional elseif statements.
Each elseif statement provides you with the ability to test for different conditions, as demon-
strated here:

if ($x -eq 10) {
Clear-Host
Write-Host "Game over! Press Enter to continue.”
Read-Host

}

elseif ($x -eq 20) {

Chapter 5 « Implementing Conditional Logic

Clear-Host
Write-Host "Invalid guess. Press Enter to try again."
Read-Host

}

elseif ($x -eq 30) {
Clear-Host
Write-Host "Invalid input. Press Enter to try again."
Read-Host

}

else {
Clear-Host
Write-Host "Unknown error. Press Enter to try again."
Read-Host

}

Here, three separate conditions are evaluated. Windows PowerShell begins this example by
testing the value of the first condition ($x -eq 10).If this test evaluates as being true, the three
statements in its code block are executed and the rest of the statements in the if statement
are skipped. If the condition evaluates as being false, the condition associated with the first
elseif statement is executed. If it evaluates as being true, the statements in its code block are
executed and the rest of the statements in the if statement are skipped. Otherwise, elseif
statement’s code block is skipped and the next elseif statement condition is evaluated. If its
condition evaluates as true, its code block executes and the rest of the statements in the if
statement are skipped. If none of the previous tested conditions evaluate as being true, the
code block associated with the else statement is executed.

If you find yourself creating if statements that consist of numerous elseif
statements that evaluate against the same value, you may be better off using a
switch statement, discussed in the next section.

Nesting if Statements

Windows PowerShell lets you nest, or embed, one if statement within another in order to
develop complex conditional tests. Nested if statements allow you to build programming
logic that begins by testing for one condition before deciding whether to further analyze
things by performing additional tests.

As an example of the usefulness of nesting if statements, consider the following (which was
extracted from the Fortune Teller game that you developed in Chapter 3, “Object-Based
Scripting with .NET”).

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

fSelect an answer based on the time and random number

#If it is the afternoon, the fortune teller will be a 1ittle cranky

if ($time -gt 12) {
Write-Host
if ($answer -eq 1) {
if ($answer -eq 2) { " Grrrr. The answer is never!" }
if ($answer -eq 3) { " Grrrr. The answer is unclear!" }
if ($answer -eq 4) { "

Grrrr. The answer is no!" }

Grrrr. The answer is yes!" }

}
#If it is morning, the fortune teller will be in a good mood
else {

Write-Host

if ($answer -eq 1) { " Ah. The answer is yes!" }
if ($answer -eq 2) { " Ah. The answer is always!" }
if ($answer -eq 3) { " Ah. The answer is uncertain!" }
if ($answer -eq 4) { " Ah. The answer is no!" }

}

In this example, the if statement checks to see if $time is greater than 12. If it is, a series of
four if statements, embedded in its code block, are executed, each of which evaluates the
value of a variable named $answer, in order to determine which answer to return to the player.
If the opening if statement evaluates as being false, an e1se statement executes instead. Note
that four i f statements have been embedded within the else statement’s code block as well.

Making Multiple Comparisons Using the switch Statement

if statements allow you to compare two conditions. By adding elseif statements, you can
create if statements that perform additional tests. As the number of additional tests
increases, they can become difficult to formulate and understand. Windows PowerShell pro-
vides access to the switch statement as an alternative. The switch statement is used to define
a collection of different test and code blocks, each of which evaluates against the same
expression.

The syntax implemented by the switch statement is outlined here:

switch (expression)

{
{test} {code block}
value {code block}
default {code block}

Chapter 5 « Implementing Conditional Logic

The switch statement begins by defining the expression against which all comparisons inside
its code block are evaluated. The switch statements support any of three different types of
comparison operations, as outlined here:

* Test. An expression whose value is evaluated.
* Value. A literal value, such as a string or number.

» Default. Specifies a default code block that is executed if none of the previously defined
comparisons evaluate as being true.

Unlike the if statement, switch statements do not stop executing once a matching value has
been found. Instead, every test specified within a switch statement is evaluated, thus poten-
tially resulting in some or all of the embedded code blocks being executed. The optional
default component and its associated code block are only executed in the event that none of
the previously defined tests evaluate as being true.

To get a good idea of how to work with the switch statement, consider the following example.

$today = get-date

switch ($today.Day)
{

1 {Write-Host "Payday!"}

5 {Write-Host "It is time to water the plants."}

10 {Write-Host "Remember to pay the bills."}

15 {Write-Host "Payday!"}

20 {Write-Host "It is time to water the plants."}

25 {Write-Host "It is time to clean the garage again."}

default {Write-Host "There are no calendar entries to remember today."}
}

Here, a series of six conditional tests have been defined, each of which is compared to the
value of $today.Day. Because each of the values being compared is distinct, only one can result
in a match. However, if you were to rework this example by adding additional tests as shown
below, multiple matches could occur and as has been stated, the switch statement will execute
the code block belonging to any matching statements.

$today = get-date

switch ($today.Day)
{
1 {Write-Host "Payday!"}
1 {Write-Host "It is time to water the plants."}

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

5 {Write-Host "It is time to water the plants."}

10 {Write-Host "Remember to pay the bills."}

10 {Write-Host "It is time to water the plants."}

15 {Write-Host "Payday!"}

15 {Write-Host "It is time to water the plants."}

20 {Write-Host "It is time to water the plants."}

25 {Write-Host "It is time to clean the garage again."}

25 {Write-Host "It is time to water the plants."}

default {Write-Host "There are no calendar entries to remember today."}
}

As you can see, for all but two dates, multiple matches can occur, resulting in the execution
of multiple code blocks. Even though these examples shown here have included single state-
ments inside each switch statement code block, there is no limit to the number of statements
that you can include.

WINDOWSs POWERSHELL OPERATORS

So far, you have seen the equals (-eg) operator used extensively in this chapter as a means of
comparing different values. Windows PowerShell provides a host of additional operators that
provide the ability to test different relationships between values and to reverse the logic of
comparison operators.

Comparison Operators

Windows PowerShell supports a number of additional comparison operators in addition to
the -eq operator, allowing you to perform comparisons that test different values in different
ways. For example, you can also compare whether a value is greater than or less than another
value. Table 5.1 lists Windows PowerShell comparison operators.

TaBLE 5.1 WiNDOWSs POWERSHELL CoMPARISON OPERATORS

Operator Description
-eq Equal to
-1t Less than
-gt Greater than
-ge Greater than or equal to
-le Less than or equal to
-ne Not equal to
§ y

Chapter 5 ¢ Implementing Conditional Logic @

Unlike arithmetic operators, Windows PowerShell does not process comparison operators
according to a predefined order or precedence. Instead, each comparison operation is per-
formed in the order in which you define it, starting from left to right. You will see several
examples of these operators in action a little later when you work on the Guess My Number
game.

Logical Operators

Windows PowerShell provides a small set of logical operators that provide the ability to
modify the logical evaluation of a comparison. Table 5.2 lists Windows PowerShell logical
operators.

TAaBLE 5.2 WINDows POWERSHELL LoGgicAL OPERATORS

Operator Description
-not Not
! Not
-and and
-or or
" _J

The -not and ! operator can be used to reverse the logic of any comparison operation, as
demonstrated here:

$x =1

$y =2

if (-not ($x -eq $y)) {Write-Host 'The value of $X does not equal $y.'}
if (I ($x -eq $y)) {Write-Host 'The value of $X does not equal $y.'}

As you can see, to use either the -not or ! operator, you must place it just before the
expression or value to be tested. When executed, these operators reverse the logic of a com-
parison operation.

Take note of the location and placement of the parentheses in the previous ex-
amples. The inclusion of the -not and ! operators require that you add an
additional set of parentheses in order to meet the syntax requirement of the
if statement, which requires that whatever is being tested be enclosed inside
parentheses.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The -and operator, on the other hand, is used to create a comparison operation that checks
to see whether two different expressions or values both evaluate to true, as demonstrated by
the following.

$x =1

$y = 2

if (($x -eq 1) -and ($y -eq 2)) {Write-Host 'The variables equal the expected
values."'}

In this example, the statement inside the if statement’s code block is executed only if both
expressions being tested by the if statement evaluate to true. Since both of the expressions
evaluated in the previous example evaluate as being true, the statement located inside the
if statement’s code block is executed.

To help speed up the logical processing of the -and operator, Windows PowerShell implements
a process called short-circuiting, whereby the second expression is evaluated only in the event
the first expression proves true. If the first expression proves to be false, there is no point to
evaluating the second expression, since the end result of the -and logical comparison will
result in a value of false regardless of the result of the value of the second expression.

The -or operator is also short-circuited. This operator checks to see whether either of two
different expressions or values evaluates to true, as demonstrated here:

$x =1
$y =2
if (($x -eq 1) -or ($y -eq 3)) {Write-Host 'At Teast one value matched..'}

In the previous example, the first expression evaluates as true and the second expression
evaluates as false. As long as one of the tested expressions evaluates as true, the statement
located inside the if statement’s code block is executed.

String Comparison Operators

While you can certainly use the first six comparison operators listed in Table 5.1 to compare
strings, the resultis a case-insensitive comparison. As a result, PowerShell will evaluate strings
such as "abc" and "ABC" as being equal, even though that may not be your intention. If string
case is important in your comparison operators, you can instead use any of the case-sensitive
string comparison operators listed in Table 5.3.

As you can see, Table 5.3 contains two different categories of operators, those that perform
case-sensitive comparison and those that do not. As an example of the difference between
these two categories of string comparison operators, consider the following example.

Chapter 5 ¢ Implementing Conditional Logic @

TaABLE 5.3 WINDOWS POWERSHELL STRING COMPARISON OPERATORS

Operator Description Case-Sensitive
-ieq Equal to No
-ilt Less than No
-igt Greater than No
-ige Greater than or equal to No
-ile Less than or equal to No
-ine Not equal No
-ceq Equal to Yes
-clt Less than Yes
-cgt Greater than Yes
-cge Greater than or equal to Yes
-cle Less than or equal to Yes
-cne Not equal to Yes
N _J
$x = "abc"
$y = "ABC"

if ($x -ieq $y) {Write-Host 'A case-insensitive match has occurred!'}
if ($x -ceq $y) {Write-Host 'A case-sensitive match has occurred!'}

In this example, the first if statement performs a case-insensitive comparison, which results
in an evaluation of true. However, the second if statement performs a case-sensitive com-
parison, which results in a value of false.

Back 1o THE GUEss MY NuMBER GAME

Okay, let’s turn your attention back to the chapter's main game project, the Guess My Number
game. Through the development of this game, you will get ample opportunity to focus on the
use of conditional logic in order to control the logical execution of Windows PowerShell
scripts.

Designing the Game

The Guess My Number game begins by displaying the game’s welcome screen and then
prompts the player to guess the game’s randomly generated number, which is in the range
of 1 to 100. Each guess made by the player is evaluated to see if it is too high, too low, or if
the player has guessed the number. The game displays hints to help guide the player’s next
guess when the player’s previous guess is too high or too low. Game statistics are displayed
after the player guesses the game’s secret number and then the player is invited to play
another round.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The Guess My Number game will be completed in 12 steps, as outlined here:

. Create a new script file and add opening comment statements.
. Define and initialize the game’s variables.

. Display the opening welcome screen.

. Set up a loop to control overall gameplay.

. Generate the game’s secret number.

. Set up a loop to collect and analyze player guesses.
. Collect the player’s input.

. Analyze player input.

. Display the game’s statistics.

. Prompt the player to play another game.

. Analyze the player’s answer.

. Clear the screen prior to terminating.

O 0 3 O Ul W W IN =

_m
N =R O

Creating a New Script
The first step in creating the Guess My Number game is to create a new PowerShell file named
GuessMyNumber.ps1 and add the following statements to it.

Khkkkkkkkhkkkhkkhkkhhkkhkhkhkhkkkhkhhkhkhhkhkkhhhhkhkhhkhhkhhkhkhhhkkhkhhhhhhhhrhkhkkhrkhkhkhhhkhkkhkkhrhkkkhrxxx

#

Script Name: GuessMyNumber.psl (The Guess My Number Game)

Version: 2.0

Author: Jerry Lee Ford, Jr.

i Date: October 10, 2008

#

ff Description: This PowerShell script challenges the player to attempt
to guess a randomly generated number in the range of

1 to 100 in as few guesses as possible.

#

khkkkkkkkkkkkkkkhkhkkhkhkkhkhkkhkkhkhkhhkhhhkhhhkhhhkhkhkhhhkkhhkkkhkhkhkhhkkkkhkrkkkkkrkkxkx

#C1ear the Windows command console screen
Clear-Host

As was the case with previous game scripts, you should begin this script using the Windows
PowerShell template developed in Chapter 2, “Interacting with the Windows PowerShell
Command Line.” In addition, you’ll notice thatI have added the script’s first statement, which
executes the Clear-Host cmdlet in order to clear the display area.

Chapter 5 ¢ Implementing Conditional Logic @

Define and Initialize Game Variables

The next step in the development of the Guess My Number game is to define and initialize
variables used throughout the script. This is accomplished by appending the statements
shown below to the end of the script file.

fDefine variables used in this script

$number = 0 #iKeeps track of the game's secret number

$no0fGuesses = 0 #Keeps track of the number of guesses made

$randomNo = New-Object System.Random #This variable stores a random object
$playGame = "Yes" #Controls when to quit the game

$status = "Play" #Controls the current round of play

$guess = 0 #Stores the player's guess

$reply = "" #Stores the player's response when asked to play again

Comments have been provided for each of the seven variables defined in order to document
and explain their purpose.

Displaying the Welcome Screen
Next, let’s set up the game’s welcome screen by adding the following statements to the end
of the script file.

#Display the game's opening screen

Write-Host ""n'n'n°n't WELCOME TO THE GUESS MY"
Write-Host ""n'n'n"t"t"tNUMBER GAME"

Write-Host ""n'n'n "t t tBy Jerry Lee Ford, Jr."

ssssssssss

Write-Host ""n"nn'nn'nn'n"n'n Press Enter to continue."

#fPause the game until the player presses the Enter key
Read-Host

As you can see, the game’s welcome screen consists of a series of Write-Host cmdlets whose
text is formatted using the "n and "t escape characters. The "n escape character generates
newline commands and the "t escape character inserts tab commands. The last statement
uses the Read-Host cmdlet to pause script execution and wait until the player presses the Enter
key.

Setting Up a Loop to Control Gameplay

The overall execution of the game is controlled by a while loop that executes until the player
decides to terminate the game. This is accomplished by adding the following statements to
the end of the script file.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ffLoop until the player decides to quit the game
while ($playGame -ne "No") {

}

As you can see, the while loop’s execution is controlled by the value assigned to the
$playGame variable, which is set equal to No later in the script once the player decides to stop
playing the game. Except for the execution of the Clear-Host cmdlet at the very end of the
script file, all of the remaining code statements that make up the Guess My Number game
are going to be embedded within this while loop.

Generating a Random Number

The next task to be completed is the generation of the game’s secret number, which is gen-
erated using the random object’s Next method. This is accomplished by adding the following
statement to the beginning of the while loop that you defined in the previous section.

ffGenerate the game's random number (between 1 - 100)
$number = $randomNo.Next(1,101)

Setting Up a Loop to Collect and Analyze Player Guesses
The next step is to clear the screen and prompt the player to make a guess, which is accom-
plished by adding the following statements just after the previous statements.

ffClear the Windows command console screen
Clear-Host

ffLoop until the player guesses the secret number
while ($status -ne "Stop") {

}

This while loop will be used to control player input and ensure that the input is acceptable.
The loops will execute until the value of $status is set equal to Stop. The code statements
outlined in the next two sections will be embedded within this loop.

Chapter 5 « Implementing Conditional Logic @

Collecting Player Input
The code statements shown next must be keyed in to the previous while loop and are respon-
sible for collecting the user’s input.

#Prompt the player to guess a number
while ($guess -eq "") {

Clear-Host #Clear the Windows command console screen
Write-Host

fCollect the player's guess
$guess = Read-Host " Enter a number between 1 and 100"

}

The loop is designed to repeat in the event the player presses the Enter key without entering
any input. Within this loop, the screen is cleared and the Read-Host cmdlet is used to prompt
the player to take a guess. The player’s answer is then stored in a variable named $guess.

Analyzing Player Input
Now that you have added the code statements required to collect the player’s guess, you need
to add the following statements immediately after the preceding section’s statements.

#iKeep track of the number of guesses made so far
$no0fGuesses++

if ($guess -1t $number) { 4The player's guess was too Tow

Clear-Host #Clear the Windows command console screen

Write-Host "“n Sorry. Your guess was too Tow. Press Enter to" °
"qguess again."

$guess = "" fReset the player's guess

Read-Host #Pause the game until the player presses the Enter key

}
elseif ($guess -gt $number) { #The player's guess was too high

Clear-Host #Clear the Windows command console screen
Write-Host "“n Sorry. Your guess was too high. Press Enter to" °

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

"qguess again."
$guess = "" {Reset the player's guess
Read-Host #Pause the game until the player presses the Enter key

}
else { {The player has guessed the game's secret number

Clear-Host {fClear the Windows command console screen

Write-Host "“n Congratulations. You guessed my number! Press Enter" °
"to continue."

$status = "Stop" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

}

The first statement increments the value of $no0fGuesses in order to keep track of the number
of guesses that the player has made thus far in the game. The rest of the statements are
organized by an if statement. The if statement is set up to test whether the value of the
player’s guess, stored in $guess, is less than the game’s random number’s, which is stored in
$number. If $guess is less than $number, then a message is displayed informing the player that
her guess was too low and $guess is set equal to an empty string ("") in order to ready it for
the player’s next guess.

Next, an elseif statement has been set up to respond in the event the player’s guess was too
high. Lastly, an else statement is defined that executes when the player correctly guesses the
game’s secret number. Note that if this is the case, the $status variable is assigned a value of
Stop in order to signal that the current round of play is over.

Displaying Game Statistics
The next set of program statements needs to be added to the end of the game’s main con-
trolling while loop.

#C1ear the Windows command console screen
Clear-Host

#Display the game's opening screen
Write-Host "“n Game Statistics"
Write-Host " -------------mmm "
Write-Host "'n The secret number was: $number.”
Write-Host "“n You guessed it in $no0fGuesses guesses.’n

Chapter 5 « Implementing Conditional Logic

f#fPause the game until the player presses the Enter key
Read-Host

As you can see, these statements are responsible for clearing the Windows command console
and then displaying game statistics. These statistics are stored in the $number and
$no0fGuesses variables.

Prompting the Player to Play Again

At this point, it is time to prompt the player to play another game and to validate the player’s
response. This is accomplished by appending the following statements to the end of the
game’s while loop, just beneath the previous sets of statements.

#C1ear the Windows command console screen
Clear-Host

$reply = "" {#Stores the player's response when asked to play again

#Prompt the player to play another round
while ($reply -eq "") {

Clear-Host {Clear the Windows command console screen
Write-Host

fiCollect the player's answer
$reply = Read-Host " Would you like to play again? (Y/N) "

ffValidate player input, allowing only Y and N as acceptable responses
if (($reply -ne "Y") -and ($reply -ne "N")) {

$reply = "" #Reset the variable to its default value

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

After clearing the screen, a variable named $reply is defined. This variable is used to store the
player’s response when prompted to play another game. The Read-Host cmdlet is used to
prompt the player to play again. An if statement is then set up to validate the player’s input,
ensuring that only a response of Y or N has been provided. Avalue of Y indicates that the player
would like to play another game, whereas a value of N indicates that the player is ready to
terminate gameplay.

Analyzing the Player’s Response

Once valid input has been received, the game needs to respond by either resetting game
variables to their default settings to prepare the game for a new round of play or by setting
$playGame equal to No, thus terminating the game’s main while loop upon its next iteration.
This is accomplished by adding the following statements to the end of the game’s main
while loop.

#The player has elected to play again
if ($reply -eq "Y") {

fiReset variables to their default values
$number = 0

$no0fGuesses = 0

$status = "Play"

$guess = 0

}
else { #The player has decided to quit playing

$playGame = "No" #Modify variable indicating that it is time to
fterminate gameplay

}

Clearing the Screen
Finally, to finish the development of the game, add the following statements to the end of
the script file, just after the end of its main while loop.

#iC1ear the Windows command console screen
Clear-Host

After executing the Clear-Host cmdlet, the script will end, returning the player back to the
Windows PowerShell command prompt.

Chapter 5 « Implementing Conditional Logic

The Final Result

Ordinarily, I would write a script like Guess My Number using functions to help organize and
modularize the script’s logic into discrete units. However, because I have not covered that
topic yet, I had to take a different approach, which involved developing some fairly complex
programming logic that was embedded inside a series of while loops.

When laying out the code of this game, I chose to take the approach of having you first define
each while loop and then come back and add in its code statements as separate steps. This
helped to break the game’s code statements into smaller groupings but also required that
you be extra careful when following behind and keying in the code statements. To help make
sure that you understand what the final result should look like, I have laid out the entire
script for you below.

1 khkkkkhkkhkhhkhhhkhhhkhhhkhhhkhhhkhhhkk

#
Script Name: GuessMyNumber.psl (The Guess My Number Game)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 10, 2008

#

Description: This PowerShell script challenges the player to attempt
i to guess a randomly generated number in the range of

1 to 100 in as few guesses as possible.

#

KRk kkkkkkhhhkhhkhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhik

#Clear the Windows command console screen
Clear-Host

fiDefine variables used in this script

$number = 0 #iKeeps track of the game's secret number

$no0fGuesses = 0 #Keeps track of the number of guesses made

$playGame = "Yes" #Controls when to quit the game

$randomNo = New-Object System.Random #This variable stores a random object
$status = "Play" #Controls the current round of play

$guess = 0 #Stores the player's guess

$reply = "" #Stores the player's response when asked to play again

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#Display the game's opening screen
Write-Host ""n"'n'n'n"t WELCOME TO0O THE GUESS MY"
Write-Host "n'n'n"t"t"tNUMBER GAME"

Write-Host ""n'n*n t t tBy Jerry Lee Ford, Jr."
Write-Host "“n'n"n"n n'n"n'n"n'n Press Enter to continue."

f#fPause the game until the player presses the Enter key
Read-Host

ffLoop until the player decides to quit the game
while ($playGame -ne "No") {

ffGenerate the game's random number (between 1 - 100)
$number = $randomNo.Next(1,101)

ffClear the Windows command console screen
Clear-Host

ffLoop until the player guesses the secret number
while ($status -ne "Stop") {

fPrompt the player to guess a number
while ($guess -eq "") {

Clear-Host #Clear the Windows command console screen
Write-Host

#Collect the player's guess
$guess = Read-Host " Enter a number between 1 and 100"

fiKeep track of the number of guesses made so far
$no0fGuesses++

if ($guess -1t $number) { {#The player's guess was too Tow

Chapter 5 « Implementing Conditional Logic

Clear-Host #Clear the Windows command console screen

Write-Host ""n Sorry. Your guess was too low. Press Enter to" °
"guess again."

$guess = "" {fReset the player's guess

Read-Host #Pause the game until the player presses the Enter key

elseif ($guess -gt $number) { #The player's guess was too high

Clear-Host #Clear the Windows command console screen

Write-Host "“n Sorry. Your guess was too high. Press Enter to" °
"guess again."

$guess = "" {Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

else { {#The player has guessed the game's secret number

Clear-Host {Clear the Windows command console screen

Write-Host "“n Congratulations. You guessed my number! Press Enter" °
"to continue."”

$status = "Stop" #Reset the player's guess

Read-Host #Pause the game until the player presses the Enter key

#Clear the Windows command console screen
Clear-Host

#Display the game's opening screen

Write-Host "'n Game Statistics”

Write-Host " -------------mmm e "
Write-Host "'n The secret number was: $number.”

Write-Host "“n You guessed it in $noOfGuesses guesses. n"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host " -----------------oom e "
Write-Host ""n"n n"'n n'n"n'n"'n'n"n'n n'n Press Enter to continue."

f#Pause the game until the player presses the Enter key
Read-Host

ffClear the Windows command console screen
Clear-Host

$reply = "" {#Stores the player's response when asked to play again

#Prompt the player to play another round
while ($reply -eq "") {

Clear-Host {Clear the Windows command console screen
Write-Host

fCollect the player's answer
$reply = Read-Host " Would you like to play again? (Y/N) "

ffValidate player input, allowing only Y and N as acceptable responses
if (($reply -ne "Y") -and ($reply -ne "N")) {

$reply = fiReset the variable to its default value

#The player has elected to play again
if ($reply -eq "Y") {

ffReset variables to their default values
$number = 0

$no0fGuesses = 0

$status = "Play"

Chapter 5 « Implementing Conditional Logic

$guess = 0

)
else { #The player has decided to quit playing

$playGame = "No" #Modify variable indicating that it is time to
ffterminate gameplay

f#Clear the Windows command console screen
Clear-Host

Well, that’s it. As long as you did not make any typos when keying it in, your version of the
Guess My Number game should be ready to run.

SUMMARY

In this chapter, you learned how to work with the if and switch statements to develop con-
ditional logic that controls the execution of groups of statements within your Windows
PowerShell scripts. Conditional logic facilitates the evaluation of user, system, and file input
against each other and against system resources. You also learned how to work with a host
of different PowerShell operators, including the logical -and and -or operators, which further
facilitate the development of conditional logic.

Now, before you move on to Chapter 6, “Using Loops to Process Data,” why don’t you set aside
a little extra time to work on and improve the Guess My Number game by tackling the fol-
lowing list of challenges.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

CHALLENGES

. Asitis currently written, the Guess My Number game provides
somewhat cryptic messages when interacting with the user.
Consider making the game more intuitive by adding additional
instructions and guidance.

2. Consider tracking and displaying additional game statistics.
For example, you might create a new variable that keeps track
of thetotalnumberof games played. Youmightalso keep track
of the number of low versus high guesses in order to help
players detect any trends in their methods of play (e.g., a
tendency to guess too low too often).

3. Consider modifying the game to allow the player to quitatany
time, instead of just at the end of the current round of play. For
example, in addition to looking for a number in the range of |
to 100, you might also look for the user to instead type a Q,
signaling a desire to quit.

4. Ratherthanarbitrarily usingarange of | to 100, considergiving
the player the option of specifying a different range. For
example, you might offer to allow the player to select from
three different ranges, suchas [to 10, | to 100, or | to [,000.

(cHAPTER)

UsING Looprs TO
PrRocCEss DATA

s you have certainly noticed already in previous chapters, loops are an

essential element in most scripts, allowing you to develop programming

logic that repeats a series of statements over and over again using a min-
imal amount of code. Without loops, it would be all but impossible to develop
Windows PowerShell scripts that are designed to process large amounts of data.
Loops also provide a mechanism for processing collections of data passed through
the object pipeline or stored in arrays. Windows PowerShell provides the ability
to set up many different types of loops and also offers commands for breaking out
of loops when necessary. This chapter will not only teach you how to implement
loops but also guide you through the creation of your next Windows PowerShell
script, the Rock, Paper, Scissors game.

Specifically, you will learn:

* How to set up do while and do until loops
* How to set up for and foreach loops
* How to create while loops

* How to use the Continue and Break keywords to alter loop execution

188 Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJect PrReviEw: THE Rock, PAPER, Scissors GAME

This chapter’s game project is based on the classic Rock, Paper, Scissors game. In this game,
the player goes head to head against the computer. As with the previous games that you have
seen in this book, the Rock, Paper, Scissors game begins by displaying a welcome screen as
shown in Figure 6.1.

25 Windows PowerShell —lo] =|

WELGCUOHRE T0 THE
R 0O C K. FHPER. SCISSO0ORS GHHME

By Jerry Lee Ford. Jr.

The welcome
screen for the

Rock, Paper, Press Enter to continue. __J
Scissors game.

After dismissing the welcome screen, the player is prompted to make a move by specifying
R for rock, P for paper, or S for scissors, as shown in Figure 6.2. Alternatively, the player can
quit the game at any time by entering Q.

| &5 Windows Powershell — o x|
Enter one of the following options: =
R = Rock
P = Paper
& - Bocissors
Q = Quit
Four options are
available to the | Make a move: <
|

player.

As soon as the player makes a move, the game generates the computer’s move and then
determines the winner of the current round of play, as demonstrated in Figure 6.3.

Chapter 6 ¢ Using Loops to Process Data

25 Windows PowerShell — o] =|

Results:

The computer picked: Scissors

You picked: Roclk

You win?

&l Allgamesresultin
awin, loss, or tie.

If the player enters anything other than R, P, S, or Q, the message shown in Figure 6.4 is dis-
played. After dismissing the message, the player is again prompted to make a move.

25 Windows PowerShell —lo] =|

.

Invalid input. Please try again.

The game
validates player
input, rejecting

anyinputthatdoes
&l not meetits
requirements.

Gameplay ends when the player enters Q. In response, the game displays the screen shown in
Figure 6.5, thanking the player for playing.

Finally, just before ending, the game displays statistics that it has been accumulating, as
demonstrated in Figure 6.6.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

25 Windows PowerShell —lo] =|

Game over. Thanks for playing Rock. Paper. Scissors.

The player has
decided to stop
p[aying Rock, Press Enter to view game stats and guit the game. __J

Paper, Scissors.

25 Windows PowerShell =13
-
Game Statistics j
Humber of games played: 9
Humbcr of gamcz wons: 3
Humber of games lost: 3
Humber of games tied: 3
The game keeps
track of wins,
losses, ties, and
the number of Press Enter to continue. _:J

games played.

WORKING WITH Looprs

In order to effectively repeat a series of commands or to process large amounts of data, you
need the ability to create loops. A loop is a set of programming statements that can be repeat-
edly executed as a unit. A loop allows you to write a few lines of code and execute them over
and over in order to perform a great deal of work. Loops help to reduce the number of code
statements required to write a PowerShell script and, by centralizing a specific set of pro-
gramming logic, help to make your scripts more manageable.

Loops are a good tool for processing the contents of arrays and collections of data returned
by cmdlets. As you have already seen, loops can also be set up to repeatedly prompt a user to
supply valid input and to repeatedly execute a collection of statements until a specific result
is achieved. Windows PowerShell provides access to a number of different types of loops,
including:

Chapter 6 ¢ Using Loops to Process Data

e do while. Iterates as long as a specified condition is true

e do until.Iterates until a specified condition is true

e for. Iterates a set number of times

* foreach. Iterates through all of the elements stored in a collection or array

e while. Iterates as long as a specified condition is true

You will learn how to work with each of these types of loops in the sections that follow.

In addition to the language looping statements listed above, Windows
PowerShell also provides access to the Where-Object and Foreach-Object
cmdlets. As you have already seen, these cmdlets let you loop through and
process lists of data as they pass through the object pipeline.

Setting Up do while Loops

do while loops execute as long as, or while, the tested condition remains true. Because the
condition being tested is evaluated at the end of the loop, you can count on the loop always
executing at least one time. The syntax of the do while loop is shown as follows.

do {
code block
} while (condition)

conditionis an expression that is tested at the end of each iteration of the loop. An example
of how to work with the do while loop is provided here:

$1 =1

do {
Write-Host $i
$it++

} while ($i -Te 10)

In this example, a variable named $1 is set equal to 1 and then used within the do while loop
that follows. Inside the loop, the value of $i is displayed and then incremented by 1. The
conditional test, located at the end of the loop is then evaluated, and as long as the value of
$1 remains less than 10, the loop continues executing. When run, this example displays the
following results.

1

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

— O O N o ol

One of the things that you need to watch out for when developing your
PowerShell scripts is an endless loop. An endless loopis a loop that never ter-
minates and thus runs forever, draining the computer’s resources. An endless
loop occurswhenyoucreatealoop thathas noway of stoppingits ownexecution.
In other words, you either forgot to provide a means for terminating it or applied
faulty logic allowing the loop to continue processing forever.

If, while testing a PowerShell script, you think something has gone wrong and
that an endless loop may be executing, you can break out of the loop and ter-
minate your script by pressing Ctrl + C.

Setting Up do until Loops

The do until loop executes until a test condition evaluates to true. Or to put it another
way, the do until loop executes as long as a condition is false. Like the do while loop, the test
performed by the do until loop is specified at the bottom of the loop, thus ensuring that the
loop always executes at least once.

The syntax of the do until loop is shown here:

do {
code block
} until (condition)

To see how to work with this type of loop, consider the following example.

$1 =1

do {
Write-Host $i
$it++
}ountil ($7 -gt 10)
This example is very similar to the previous do while example, except that this time the loop

has been set up to run until the value of $i is greater than 10. When executed, this example
counts to 10 exactly like the previous while loop did, demonstrating that each of these two

Chapter 6 ¢ Using Loops to Process Data

loops can be used interchangeably. The do unti1loop can also be used to control the collection
of user input, as demonstrated in the following example.

$response = "Play"

do {
$response = Read-Host "Do you want to play again (Y/N)"
} until ($response -eq "N")

Here, a loop has been set up that prompts the user to respond with a value of Y or N. If the
user enters Y, the loop repeats. If this were a real script, the loop would include additional
logic required to perform a particular task, which would be performed again each time the
user responded with an input of Y. As is, the loop continues to run and to prompt the user
for input, until the user finally enters a response of N. An example of the output generated
by this example is shown here:

Do you want to play again (Y/N):
Do you want to play again (Y/N):
Do you want to play again (Y/N):
Do you want to play again (Y/N):
Do you want to play again (Y/N):
PS C:\>

Sk K K <

Creating for Loops

The for statement is used to create a loop that runs until a specified condition becomes true.
The for loop supports a number of different variations but is generally used to execute a
specific number of times, based on the value of a variable that is used as a counter to keep
track of the number of iterations made by the loop. The value of the counter can be increased
or decreased based on the logic being implemented.

The syntax of the for loop is shown here:

for (7nitialization; condition; Sstep)
{code block}

All three parameters specified above are optional. initialization is a placeholder representing
a variable that will be used to control the execution of the loop. condition represents an
expression that is evaluated each time the loop iterates to determine whether the loop should
run again. As long as the value of the condition remains true, the loop will run again. step
specifies an incremental value that is added to the value specified by the initialization place-
holder. If not specified, Windows PowerShell uses a default value of 1 for step.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As the following example demonstrates, all of the parameters that make up the for loop are
optional.

for (5;) {
Write-Host "Hi!l."
}

When executed, this example begins looping forever as the following output demonstrates.
To terminate the loop’s executions, you must press Ctrl + C to force the termination of the
script.

Hil
Hi!l
Hi!

The for loop has limited value when used in this manner. Instead, it is more typical that the
for loops be set up using all of their parameters, as demonstrated here:

for ($i =1; $i -le 10; $i++) {
Write-Host §$i
}

In this example, a for loop has been set up to iterate to 10, displaying the value of $i upon
each iteration. Before starting, the loop defines and initializes a variable named $1, setting it
equal to 1. The loop is set up to iterate as long as the value of $i is less than 10. The value of
$1 is incremented by 1 at the end of each iteration of the loop. When executed, this example
displays the following output.

= W 0O N O O & W N

Chapter 6 ¢ Using Loops to Process Data

As you can see, the for loop is very flexible. For example, the value assigned to the step
parameter at the end of each iteration can be decremented instead of incremented, as demon-
strated in the following example.

for ($i = 10; $1i -ge 1; $i--) {
Write-Host §$i
}

Here, the value of $1i is initially set equal to 10 and is decremented by one each time the loop
iterates, resulting in the following output.

—_
o

[l A IR OS I S A N =) B N I e o N e)

The for loop can also be used to process the contents of arrays, as demonstrated in the fol-
lowing example.

$I’lumber'5 =@(llall’ Ilbll, IICII, Ildll, llell)

for ($i = 0; $1 -le $numbers.Length - 1; $i++) {
Write-Host $numbers[$i]
}

Here, an array named $numbers is created and populated with a list of 10 numbers. Next, a
for loop is defined. The value of a variable named $i is defined and initialized with a value
of 1. Next, the condition parameter is defined and consists of an expression that uses the
array’s Length property to determine the length of the array and then subtracts 1 from this
value (since arrays are zero based). Lastly, the value of $1 is incremented each time the loop
iterates. The output produced when this loop executes is shown below.

D a O T @

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The value assigned to the step parameter does not need to always be 1. As the following
example demonstrates, you can increment (or decrement) this value by any value you want.

$numbers = @(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

for ($i = 0; $1 -Te $numbers.Length - 1; $i += 2) {
Write-Host $numbers[$i]
}

Here, the value of $i is incremented by two upon each iteration of the loop, resulting in the
following output.

O N o1 W

As you can see, by incrementing the value of $i by two each time the loop iterates, every other
value in the $numbers array was processed.

Formoreinformationonthe for loop,enterGet-Help about_foratthe Windows
PowerShell command prompt.

Creating foreach Loops

The foreach loop is designed to facilitate the processing of collections of data. It is tailor-made
to process lists, including arrays, for which you do not know in advance how many elements
are stored in it. While you could certainly use other types of loops to do the same thing, the
foreach loop offers a convenient way to process lists because it does not require you to set and
increment an index number.

The syntax of the foreach loop is shown here:

foreach (element in collection)
{code block}

element is a placeholder representing an element stored in the collection. Upon each itera-
tion of the loop, the value of e/ement is updated with the next item stored in the collection.
collectionis the name of the array to be processed.

Chapter 6 ¢ Using Loops to Process Data

The following example demonstrates how to set up a foreach loop in order to process the
contents of an array.

$numbers = @(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

foreach ($i in $numbers) {
Write-Host $i
}

In this example, an array named $numbers has been defined and assigned a list of 10 numbers.
A foreach loop is then set up to process each element stored in the array. Upon the first
iteration of the loop the first element in the array is assigned to $i and the Write-Host cmdlet
is then used to display its value. Upon the second iteration, the value of $i assigned the value
of the second array element. Processing continues until all array elements have been pro-
cessed. If executed, this example would display the output shown here:

O 0O N O O &~ W N

—_
o

The foreach loop can also be used to process data returned by cmdlets such as Get-Process
and Get-ChildItem, that return results in the form of a collection. For example, the following
statements can be added to a Windows PowerShell script to generate a list of all services
currently running on the computer.

foreach ($x in Get-Service) {
if ($x.Status -eq "Running") {Write-Host $x.Name}

}

As you can see, this example uses a foreach loop to iterate though the output generated by
the Get-Service cmdlet. Each time the loop iterates the name of a service, it is assigned to
$x.An if statement is then used to examine the Status property for each service to determine

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

whether it is equal to Running. The Write-Host cmdlet is then used to display the name of each
running service, by referencing each service’s Name property. When executed, this example
will produce output similar to the following.

aawservice
AeLookupSvc
Appinfo

Apple Mobile Device
AudioEndpointBuilder
Audiosrv

avg8wd

Basics Service
BFE

BITS

Bonjour Service
Browser

CryptSvc
DcomLaunch

Dhcp

Dnscache

DPS

EMDMgmt

Eventlog
EventSystem
fdPHost

FDResPub
FontCache3.0.0.0
gpsvc

hidserv

IKEEXT

iphlpsvc

iPod Service
KtmRm
LanmanServer
LanmanWorkstation
LightScribeService
Imhosts

MDM

MMCSS
MpsSvc
Netman
netprofm
NTaSvc

nsi

nvsvce
PcaSvc
PTugPlay
PolicyAgent
ProfSvc
RasMan
RpcSs

SamSs
Schedule
seclogon
SENS
SheTTHWDetection
sTsvc
Spooler
SSDPSRV
SstpSvc
stisvc
SysMain
TabletInputService
TapiSrv
TermService
Themes
TrkWks
upnphost
UxSms
W32Time
WdiSystemHost
WebClient
WerSvce
WinDefend
Winmgmt
WPDBusEnum

Chapter 6 ¢ Using Loops to Process Data

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

WSCSVC
WSearch
wuauserv
wudfsvc
XAudioService

As the preceding example demonstrates, foreach loops can be used to iterate through all of
the command output generated by any cmdlet that generates its output in the form of a
collection and does so without requiring that you define and maintain a counter or provide
any other controlling logic.

For moreinformation on the foreach loop, enter Get-Help about_foreachatthe

"'\
=S — N
Windows PowerShell command prompt.

Using while Loops
The while loop is designed to create a loop that runs as long as, or while, its conditional test
remains true. The while loop has the following syntax.

while (condition)
{code block}

condition is an expression, which is evaluated each time the loop is run. If the value of
condition evaluates to true, the loop is run. Otherwise, its execution terminates. Obviously, in
order to prevent an endless loop, it is important that you include the programming logic
required to terminate the loop.

The following example demonstrates how to set up a while loop.
$1 =1
while ($1 -le 10) {

Write-Host $i

$1++
}

Here, a variable named $i is defined and assigned an initial value of 1. Next, a while loop is
defined that executes as long as, or while, the value of $i remains less than 10.

Chapter 6 ¢ Using Loops to Process Data

O 00 N o o1 B>~

10

You will see examples of the while loop in action later when you work on this chapter’s game
script.

For more information on the while loop, enter Get-Help about_while at the
Windows PowerShell command prompt.

ALTERING Loop EXECUTION

Sometimes certain conditions may occur in which you will want to prematurely terminate
the execution of a loop. For example, if you wrote a foreach loop in order to search an array
for a given element and you found that element somewhere in the middle of the array,
rather than iterating through the rest of the array just for the fun of it, you’ll probably want
to break out of the loop and get on with the business at hand. Alternatively, you may want
to prematurely stop the current iteration of a loop, without actually terminating the loop
itself. Windows PowerShell supports both of these actions through the break and continue
commands.

Using the break Command
When the break command is executed, the innermost loop is terminated and processing con-
trol jumps to the next statement that follows the end of the loop.

Loops can be a little confusing to work with when you are just starting out as a
new programmer. The reason | stated that the break command terminates the
execution of the “innermost” loop in the preceding sentence is because loops
can be embedded within one another. The break command will terminate the
inner loop in which it is embedded but will have no impact on the outer loop.

The following example demonstrates how to use the break command to terminate the pro-
cessing of a loop.

for ($i =1; $i -le 10; §$i++) {
if ($1 -eq 5) |

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

break
}
Write-Host $i
}

Here, a for loop has been set up to execute 10 times. Within the loop an if statement has
been added that inspects the value of $i upon each iteration. Upon finding that $i equals 5,
the if statement executes the break command, thus terminating the loop and resulting in
the following output.

1
2
3
4

Using the continue Command

When the continue command is executed, the current iteration of the innermost loop is ter-
minated. However, the loop keeps on executing, if appropriate. For example, if a PowerShell
script executed the continue command while in the middle of processing an array, and the
continue command was executed, any processing for the current array element would be
skipped and the loop would continue on processing the rest of the elements stored in the
array.

The following example demonstrates how to use the continue command to interrupt the
processing of a loop and force it to resume execution back at the beginning of the loop.

$1 =1
while ($1 -Te 10) {
if ($1 -eq 5) {

$i++
continue

Write-Host §i
$it++

Chapter 6 ¢ Using Loops to Process Data

Here, a while loop has been set up to execute 10 times. Within the while loop an if statement
has been defined that executes the continue command when the value of $i becomes equal
to 5. When this occurs, the current iteration of the loop is terminated and the loop resumes
executing back at the beginning of the loop. The end result is that the fifth iteration of the
loop is never finished and the number 5 is not displayed in the output generated by the
example, as shown here:

O O O N O & W N —

Windows PowerShell also supports the exit command. When executed, this
command terminates the execution of the entire script, not just the current it-
eration of a loop. An example of how to use the exit command is provided here:

if ($x -gt 100) {
Write-Host "Error - Maximum value exceeded."
exit

}

Whenincluded as part of aPowerShell script, the i f statementshown above will
terminate the script’s execution if it gets executed and the value of $x exceeds
100. If run at the Windows PowerShell command line, the exit comment will
close the current PowerShell session and also close the Windows command
console window.

BAck 1O THE Rock, PAPER, ScissorRs GAME

Okay, it is time to turn your attention back to the chapter’s main game project, the Rock,
Paper, Scissors game. The development of this game will demonstrate how to control script
execution using loops to facilitate input collection as well as to control the termination of
gameplay.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Designing the Game
The Rock, Paper, Scissors game challenges the player to outguess the computer by selecting

superior moves each time a new round is played, based on the scoring rules outlined in
Table 6.1.

TABLE 6. | Rock, PAPER, ScissORS SCORING RULES

Player Move Computer Move Result

Rock Rock Tie

Rock Scissors Player Wins

Rock Paper Player Loses

Paper Paper Tie

Paper Rock Player Wins

Paper Scissors Player Loses

Scissors Scissors Tie

Scissors Paper Player Wins

Scissors Rock Player Loses
" _J

The player’s move is specified by entering a letter corresponding to a valid move (R for Rock,
P for Paper, or S for Scissors). The computer’s move is generated based on a randomly selected
number. In addition to guiding the player through each round of play, the game continuously
collects a number of game statistics (total games played, wins, losses, and ties), which are
displayed at the end of the game.

The overall logical flow of the Rock, Paper, Scissors game is fairly simple. To set it up, we will
complete its development in twelve steps, as outlined here:

[

. Create a new script file.

. Define and initialize script variables.

. Display the game’s welcome screen.

. Set up a loop to control gameplay.

. Generate the computer’s move.

. Prompt the player to make a move.

. Validate the player’s move.

. Translate the player’s move.

. Display the computer’s and player’s moves.
. Analyze the results of gameplay.

. Reset variable values for a new round of play.
. Display game statistics.

O oo 30 Ul dh WIN

_
N = O

Chapter 6 ¢ Using Loops to Process Data

Creating a New Script File
Let’s begin the development of the Rock, Paper, Scissors game by creating a new PowerShell
file named RockPaperScissors.ps1 and adding the following statements to it.

khkkkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhhkhhhhkhhkhhkhkhhhkhkhkhkhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhiitk

#

Script Name: RockPaperScissors.psl (The Rock, Paper, Scissors Game)
Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 12, 2008

#

Description: This PowerShell script challenges the player to beat the
computer in a game of Rock, Paper, Scissors

#

kkhkkkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhhhhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhirk

f#fC1ear the Windows command console screen
Clear-Host

Defining and Initializing Script Variables
Next, let’s define and initialize variables used throughout the script by appending the fol-
lowing statements to the end of the script file.

#Define variables used in this script

$playGame = "True" #This variable controls game play

$number = 0 #This variable stores the numeric version of the
ffcomputer's move

$randomNo = New-Object System.Random #This variable stores a random object

$guess = 0 #This variable stores the numeric version of the
fiplayer's move

$playerMove = "" #This variable stores the string version of the
fiplayer's move

$computerMove = "" #This variable stores the string version of the
ficomputer's move

$noPlayed = 0 #This variable keeps track of the number of games
ffplayed

$nolon = 0 #This variable keeps track of the number of games won

$noLost = 0 #This variable keeps track of the number of games lost

$noTied = 0 #This variable keeps track of the number of games tied

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, comments were added to document the use and purpose of each variable.

Displaying the Game’s Welcome Screen

The next step is to add the programming statements that are responsible for displaying the
game’s welcome screen. These statements, provided next, should be added to the end of the
script file.

#Display the game's opening screen

Write-Host ""n'n'nn"t"t"tWELCOME TO THE"

Write-Host ""n'n'n’t ROCK, PAPER, SCISSORS GAME"
Write-Host ""n'n'n 't t't By Jerry Lee Ford, Jr."

sssssssss

Write-Host ""n"n"n"n'n'n"'nn"n°n Press Enter to continue."

f#Pause the game until the player presses the Enter key
Read-Host

Setting Up a Loop to Control Gameplay
The overall execution of the Rock, Paper, Scissors game is controlled by a while loop. To set it
up, add the following statements to the end of the script file.

#fLoop until the player guesses the secret number
while ($playGame -ne "False") {

}

As shown above, this loop is set up to execute until the value of $playGame is set equal to
False.This variable is set to True at the beginning of the game and remains that way until the
player later decides to stop playing by entering Q (for quit) when prompted to play another
round. The rest of the statement that makes up the Rock, Paper, Scissors game will be added
to this loop, with the exception of the statements that display game statistics at the very end
of the game.

Generating the Computer’s Move

As has been the case with previous game scripts, a random number must be generated. This
time the random number will be used to select the computer move each time a new round
of play occurs. The statements responsible for generating this random number and for asso-
ciating that number with a specific move are shown in the following code, and should be

Chapter 6 ¢ Using Loops to Process Data

added to the beginning of the while loop (after the opening curly brace) that you created in
the previous section.

fHGenerate the game's random number (between 1 - 3)
ffValue assignment: 1 = Rock, 2 = Paper and 3 = Scissors
$number = $randomNo.Next(1l, 4)

#Translate the computer's move to English

if ($number -eq 1) {$computerMove = "Rock"}

if ($number -eq 2) {$computerMove = "Paper"}
if ($number -eq 3) {$computerMove = "Scissors"}

Asyou can see, the game generated a number in the range of 1 to 3. Avalue of 1 will represent
amove of Rock. A value of 2 will represent a move of Paper, and a value of 3 represents a move
of Scissors.

Prompting the Player to Make a Move

Next, the game needs to prompt the player to make a move, which is accomplished by
appending the following statements to the end of the game’s main while loop, just before the
closing curly brace.

#Prompt the player to guess a number
while ($quess -eq "") {

Clear-Host #Clear the Windows command console screen
#Display instructions

Write-Host "“n'n"
Write-Host " Enter one of the following options: n"

Write-Host " ----------------"--“----e - n"

Write-Host " R = Rock"

Write-Host " P = Paper"

Write-Host " S = Scissors”

Write-Host " Q = Quit™n"

Write-Host " ----------------------m n‘n‘n'nnn n'nn'n"

fCollect the player's guess
$guess = Read-Host " Make a move"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Here, another while loop has been set up that prompts the player to enter one of 4 menu
options. The player’s input is then stored in a variable named $guess.

Validating the Player’s Move

After the player has responded to the prompt to make a move, the game needs to validate the
player’s input to ensure that it is valid. This is accomplished by appending the following
statements to the end of the game’s main while loop.

#Validate the player move
if ($guess -eq "Q") { #Player has decided to quit playing

Clear-Host #Clear the Windows command console screen

Write-Host "“n'n"
Write-Host " Game over. Thanks for playing Rock, Paper, Scissors.”

Write-Host ""n"n"n'nn'n n'n"n'n"n'n"n"'n"'n'n'n°n
Write-host " Press Enter to view game stats and quit the game."

Read-Host {fPause while the player reads the screen
$playGame = "False" 4Set variable to false indicating the game is over
continue #Skip the remainder of the Tloop

}
elseif (($guess -ne "R") -and ($guess -ne "P") -and ($guess -ne "S")) {

Clear-Host {fClear the Windows command console screen
Write-Host "“n'n'n Invalid input. Please try again."
Read-Host #Pause while the player reads the screen

$guess = #iClear out the player's previous guess

continue #Skip the remainder of the Tloop

Chapter 6 ¢ Using Loops to Process Data

Here, an if statement has been set up to determine if the player entered a value of Q or q. If
this is the case, a message is displayed thanking the player for playing the game and then the
value of $playGame is set equal to False. This signals the player’s decision to halt gameplay.
Next, a continue command is executed, halting the current execution of the loop.

If the player did not enter Q when prompted to make a move, an elseif statement is then
executed in order to determine whether the player entered anR,aP,oran S (e.g., avalid move).
If the player did not enter a valid move, an error message is displayed asking the player to try
again and the value of $guess is set to an empty string to ready the game for another guess.
Finally, the continue command is executed, forcing a new iteration of the loop.

Assuming that the player entered a valid move, the code in this i f statement and its associated
elseif statement is skipped and processing continues with the code statements outlined in
the next section.

Translating the Player’s Move

Next, add the following statements to the end of the game’s main while loop. These statements
will execute only if the statements defined in the previous section have validated the player’s
move.

#Translate the player's move to English

if ($qguess -eq "R") {$playerMove = "Rock"}

if ($guess -eq "P") {$playerMove = "Paper"}
if ($qguess -eq "S") {$playerMove = "Scissors"}

As you can see, these statements consist of three if statements that assign a value of Rock,
Paper, or Scissors to the $playerMove variable based on the player’s move (as specified by the
value of $guess).

Displaying the Computer’s and Player’s Moves

The next set of statements, which should be added to the end of the script’s main while loop,
begins the process of displaying the results of the current round of play. Specifically, they use
the Write-Host cmdlet to display the value of the $computerMove and $playerMove variables,
thus displaying the moves attributed to the computer and player.

Clear-Host {Clear the Windows command console screen

Write-Host " “n°n°n Results: ™ n"

Write-Host " -------------------mmm e “n"
Write-Host " The computer picked: $computerMove™n"
Write-Host " You picked: $playerMove ' n"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host " ------------------ommii i ‘nTn"

$noPlayed += 1 {Increment count by 1

In addition to displaying the moves made during the current round of play, the last statement
shown above increments the value of $noP1ayed. This variable is used to keep track of the total
number of games played since the Rock, Paper, Scissors game was started.

Analyzing the Results of Gameplay

Next, the game needs to figure out whether the player has won, lost, or tied the game and
then display the results of this analysis, which is accomplished by adding the following state-
ments to the end of the script’s main while loop.

switch ($computerMove)
{

"Rock" { #The computer picked rock

if ($playerMove -eq "Rock") {
$noTied += 1 #Increment count by 1
Write-Host " You tie!"

if ($playerMove -eq "Paper") {
$noWon += 1 {Increment count by 1
Write-Host " You win!"

if ($playerMove -eq "Scissors") {
$noLost += 1 #Increment count by 1
Write-Host " You lose!"

"Paper" { #The computer picked paper

if ($playerMove -eq "Rock") {
$noLost += 1 #Increment count by 1

Chapter 6 ¢ Using Loops to Process Data @

Write-Host " You lose!"

if ($playerMove -eq "Paper") {
$noTied += 1 #Increment count by 1
Write-Host " You tie!"

if ($playerMove -eq "Scissors") {
$noWon += 1 #Increment count by 1
Write-Host " You win!"

"Scissors" { ffThe computer picked scissors

if ($playerMove -eq "Rock") {
$noWon += 1 #Increment count by 1
Write-Host " You win!"

if ($playerMove -eq "Paper") {
$noLost += 1 #Increment count by 1
Write-Host " You lose!"

if ($playerMove -eq "Scissors") {
$noTied += 1 4#Increment count by 1
Write-Host " You tiel"

ffPause the game until the player presses the Enter key
Read-Host

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, these statements have been organized into three tests using a switch state-
ment code block. The first test checks to see if the computer’s move, as indicated by
$computerMove, is equal to Rock. Likewise, the next two tests examine whether the computer’s
move is Paper or Scissors. Within each of these three tests, a series of three if statements is
defined that are responsible for comparing the player’s move, as indicated by $playerMove, to
the computer’s move to determine the results of the current round of play. Based on the
results of this analysis, a message is displayed showing the results. Also, inside each if state-
ment is a statement that increments the value of the $noTied, $noWon, and $noLost variables
as appropriate, thus keeping track of game statistics.

Resetting Variable Values for a New Round of Play

The last set of statements to be added to the end of the game’s main while loop are outlined
below. These statements are responsible for resetting variable values to their default setting
in order to ready the game for a new round of play.

#iReset variables to prepare for a new round of play

$number = 0 ffReset the computer's guess back to zero

$guess = 0 #fReset the numeric version of the player's guess
fiback to zero

$playerMove = "" fiReset the string version of the player's guess back
fto an empty string
$computerMove = "" {Reset the string version of the player's guess

ftback to an empty string

Displaying Game Statistics

The last task performed by the game before it stops running is the display of statistics collected
during gameplay. The statements that display this information are outlined in the following
code and should be added to the end of the script file below the main while loop.

#Clear the Windows command console screen
Clear-Host

#Display the game statistics
Write-Host "“n'n'n Game Statistics™n"
Write-Host " --------------mmmm e n"
Write-Host "*n Number of games played: $noPlayed”
Write-Host "“n Number of games won: $nolWon"
Write-Host ""n Number of games lost: $noLost"

n

Write-Host "“n Number of games tied: $noTied ' n"

Chapter 6 ¢ Using Loops to Process Data @

Write-Host " ---------------mmmemie e "
Write-Host ""n"n nn'n'n"n Press Enter to continue."

ffPause the game until the player presses the Enter key
Read-Host

f#fC1ear the Windows command console screen
Clear-Host

As you can see, these statements clear the screen and display game statistics, stored in vari-
ables embedded inside a series of strings.

The Final Result

Well, that’s it. At this point your Rock, Paper, Scissors scripts should be ready to run. So, go
ahead and see how it works. If you run into any errors, use the error messages that are dis-
played to locate the area within your script where errors are occurring and then double-check
your typing in order to find out where you may have made a typo or two.

SUMMARY

In this chapter, you learned how to set up the execution of do while, do until, for, foreach,
and while loops. Using these loops, you can create and execute programming logic that
repeatedly processes collections of statements in a centralized location in order to process
large amounts of data. Loops also serve as an effective tool for repeatedly executing a series
of commands over and over again; for example, when prompting for and validating user
input. As you have seen, you can also use loops to process data passed through the object
pipeline or which is stored in arrays. You also learned how to use the break and continue
commands to exercise control over the execution of loops.

Now, before you move on to Chapter 7, “Organizing Scripts Using Functions,” why don’t you
set aside a little extra time to improve the Rock, Paper, Scissors game by tackling the following
list of challenges.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

CHALLENGES

. As currently written, the Rock, Paper, Scissors game is a little
cryptic. Consider adding additional text throughout the game
to provide the player with a more user-friendly experience.

2. In addition to the four options displayed at the beginning of
each player turn, consider adding an option that provides the
player with access to a help screen from which players
unfamiliar with the Rock, Paper, Scissors game can learn the
rules for playing the game.

3. Atthe end of the game, statistics are displayed that show the
player the number of games won, lost, and tied. In addition to
showing the player these raw numbers, consider doing a little
arithmetic and providing the player with some percentages
(e.g., the percentage of games won, lost, and tied).

4. Consider providing the user with the ability to display game
statisticsatany pointduringthe game. Forexample, you might
provide the player with the ability to enter Sin order to display
the game statistics.

(cHAPTER)

ORGANIZING ScripPTs USING
FUNCTIONS

ne missing tool in your Windows PowerShell programming arsenal is the

ability to organize your PowerShell scripts into functions. Functions allow

you to write code statements once in a named code block and then call
upon them for execution as many times as necessary from anywhere in your
PowerShell script. By helping to centralize programming logic, functions make
your program code easier to maintain and understand. Functions also affect vari-
able scope, allowing you to further localize variable access, thus helping you to
write tighter code. This chapter will teach you how to work with functions. In
addition, you will also learn how to work with filters, which although similar to
functions, provide a tool for handling large amounts of object pipeline more effi-
ciently. You will also learn how to create your next computer game, the PowerShell
Hangman game.

Specifically, you will learn how to:

* Set up functions to perform specific tasks
* Develop functions that accept arguments and return a result
» Use functions as a means of limiting scope

* Create filters in order to efficiently process object pipeline data

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE POWERSHELL HANGMAN GAME

This chapter’s game project is the PowerShell Hangman game. Although a little different
from the traditional children’s Hangman game, this PowerShell game still captures the spirit
of the original. When first started, the game displays the screen shown in Figure 7.1, wel-
coming the player and prompting her for permission to start a round of play.

25 Windows PowerShell —lo] =|

Welcome to the

I

PowerShell Hangman Game?

ow

gk!**k***

8
£

The PowerShell
Hangman game’s Would you like to play? (¥ N>: __J
welcome screen.

After getting the player’s permission to start a new round, the game prompts the player to
make a guess, as demonstrated in Figure 7.2.

25 Windows PowerShell — o] =|

—
Enter a guess:

The player must
enter asingle
character guess
and press the &l

Enter key.

After each guess, the game displays a screen similar to the one shown in Figure 7.3. The player
is given a maximum of 12 guesses to guess the game’s secret word, which is represented by
a series of underscore characters. This screen also lists every valid guess made so far by the
player (invalid guesses, such as numbers and most special characters are not accepted or

Chapter 7 Organizing Scripts Using Functions @

counted against the player). This screen also keeps the player informed of how many guesses
she has left.

25 Windows PowerShell

=10l x|

Results: j

Letters that have heen guessed: ¢t

Humber of guecces wemaining: 11

The player has
Press Enter to continue: __J missed her first

guess.

Figure 7.4 shows how the game might look after the player has made a number of additional
guesses.

24 Windows PowerShell —lo] =|
Results: :I
a ar
Letters that have been guessed: t psreal
Humber of guesces wemaining: &
FIGURE 7.4

The player has five
guesses remaining

Press Enter to continue: __J to figure out the

secret word.

The game rejects guesses consisting of most special characters, numbers, or multiple letters.

For example, Figure 7.5 shows the screen that is displayed in the event the player attempts
to enter more than one letter at a time.

Gameplay ends when the player guesses the secret word, at which time the screen shown in

Figure 7.6 is displayed, acknowledging the player’s success and informing her how many
guesses were necessary to win.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Error: You may enter only one letter at a time.

FIGURE 7.
n Press Enter to continue.:

The game
validates all input,
displaying errors
explaining why
certainguessesare |

not accepted.

Game over. You have guessed the secret word in 12 guesses.

The scerct word waz BN C K ¥ N R D

The player has
won the game by
guessing the &l
secret number.

Gameplay also ends when the player runs out of guesses, as demonstrated in Figure 7.7.

Game over. You have exceeded the maximum allowed number of guesses. —

The secret word was T OH 8 T ER

The hest you could do was t _a _t e »

The player failed
to guess the
game’s secret
word before
running out of &l

guesses.

Chapter 7 Organizing Scripts Using Functions

CHANGING ScripT DEsIGN UsING FUNCTIONS AND FILTERS

In the last couple chapters, you were introduced to a number of different programming con-
structs that you can use to improve the overall organization of your Windows PowerShell
scripts. Using the if and switch statements, you learned how to set up conditional tests and
to group related sets of statements for execution when certain conditions evaluate as being
true. Using the do while, do until, for, foreach, and while loops, you learned how to group
related statements that perform a given task repeatedly, centralizing key programming logic
and reducing the overall number of code statements required to create PowerShell scripts.
Now it is time to learn about functions and filters.

A function is a named code block that can be executed by referencing its name. When called,
all of the statements inside a code block are evaluated and executed. Functions can accept
arguments and return a result. A filter is very similar to a function. There is nothing that you
can do with a filter that you cannot do with a function. The difference between the two being
that filters are designed to more efficiently process large amounts of object pipeline data.

Predefined functions abound in Windows PowerShell. For example, when you
type C: or D: to switch between drives at the Windows PowerShell command
prompt, you are actually executing functions that in turn make calls to the
Set-Location emdlet.

Improving Script Organization

One of the primary benefits of functions is that they help to reduce the number of lines of
code required to write a script. Functions also facilitate the modular development of scripts
by providing the ability to organize code statements into named code blocks, which can then
be executed over and over again from any location within the script file. Functions make your
Windows PowerShell scripts more manageable, providing the building blocks required to
create larger and more complex scripts, without necessarily increasing complexity or ending
up with tons of code. For example, suppose you were planning on writing a new PowerShell
game that performs the following tasks.

» Prompts the player for permission to execute.
* Displays a welcome screen

* Manages the collection of user input

* Displays a short story incorporating user input
* Prompts the player to play again

One way to develop this script would be to begin by defining any variables that are needed
followed by a series of functions, each of which is responsible for managing one of the tasks

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

outlined above. The rest of the script would then consist of programming logic that calls upon
these functions when needed.

Creating Reusable Code

As has already been stated, functions provide a way of improving the organization of your
PowerShell script files by letting you group related sets of code statements together and then
making them callable from any location within the script.

Istrongly suggestthatyouusefunctionsasthe primary organizational tool within
all your Windows PowerShell scripts. Using functions to organize script files,
you can break things down into smaller and more easily manageable units. This
will help you to separate your programming logic into discrete modules, which
can be created and tested a unit at a time.

Perhaps the biggest benefit provided by functions is their ability to assist you in the develop-
ment of reusable code. As a general rule, anytime you find that you need to perform a given
task more than once, it is probably a good candidate for inclusion in a function, such as
retrieving random numbers each time a new round of gameplay is started. Once created, you
can call upon a given function as many times as necessary, using a single calling statement,
thus facilitating code reuse and resulting in a leaner and meaner PowerShell script.

ENHANCING ScrRIPT ORGANIZATION WITH FUNCTIONS

Using functions, you can break down your Windows PowerShell scripts into manageable
blocks of code, calling on each block as appropriate. Functions provide the building blocks
required to build modular code, thus facilitating code maintenance. Code testing is also sim-
plified because, using functions, you can develop your PowerShell script in small chunks,
each of which can be individually tested and verified. Functions also result in smaller scripts.
Smaller scripts are easier to understand and maintain. After all, it is a lot easier to modify
statements located in a single function than it would be to modify that same set of statements
if they were instead used over and over again in different parts of a script file.

Function Structure
In its simplest form, a function consists of the keyword function, followed by the name
assigned to the function and then a code block, as demonstrated here:

function Write-Greeting {
Write-Host "Hello World!"

Chapter 7 Organizing Scripts Using Functions @

Unlike variables, there are no hard and fast rules that you must follow when
naming functions. However, it is a good idea to assign descriptive names to your
functions that help identify each function’s purpose. In this book, you will see
that | have elected to follow a function naming scheme that mimics the naming
scheme used by cmdlets. Specifically, functions are assigned names that begin
with a verb, followed by the - character and then a noun. | suggest that you
develop your own naming scheme and then stick to it in all your Windows
PowerShell scripts. This will help to make your code easier to read and manage.

Here, a function named Write-Greeting has been created. When called, this function uses the
Write-Host cmdlet to display a text string. Of course, you can include as many statements as
you want within a function’s code block. You can execute this function from anywhere within
the PowerShell script where it has been added by specifying its name, as demonstrated by the
following.

function Write-Greeting {
Write-Host "Hello World!"

Write-Greeting
Here, a function is defined, initialized, and then executed by specifying its name.

| recommend that you define all your functions in a central location at the be-
ginning of your PowerShell script files. This will ensure that all your functions
are defined and initialized before they are called upon. It will also help to make
your program code easier toread and will make things a lot easierto find. As such,
I suggest you modify your Windows PowerShell script template as shown here:

*kk
#
Script Name:

Version:

Author:

Date:

#

Description:
#

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Initialization Section

Functions and Filters Section

Main Processing Section

Asyou cansee, | have added three additional sections to the script template. The
Initialization Section identifies the Llocation within the script where script Level
variables should be defined and initialized. The Functions and Filters Section
identifies the Location where any functions and filters will be defined. The Main
Processing Section identifies the location where the script’s controlling logic
should be placed.

Going forward, this modified version of the template will be used in the devel-
opment of the book’s game scripts.

Processing Arguments

Although there is plenty of value in being able to organize groups of related statements into
named code blocks in order to be able to repeatedly execute them as a unit, functions are
even more useful when you set them up to process inputs passed to them as arguments. For
example, in the next section you will learn how to set up a function that adds together any
two numbers that are passed to it. Functions can also process output generated by cmdlets.

By developing functions that accept and process inputs, referred to as
arguments, you make the functions independent of the PowerShell script in
which they reside. Therefore, you can copy and paste a function into another
PowerShell script and use it without modification, as long as it still gets called
and passed the appropriate inputs in its new script. This facilitates code reuse
and over time you should be able to develop a small library of functions, which
you can use as building blocks in the development of your Windows PowerShell
scripts. This should enable you to work smarter and faster by saving you
the trouble of reinventing the wheel each time you start a new development
project.

Chapter 7 Organizing Scripts Using Functions @

Passing Arguments

Windows PowerShell provides several different ways of passing arguments to PowerShell
scripts. One way is to specify parameters, representing each argument in a comma-separated
list, enclosed in parentheses, immediately after the function name, as demonstrated by the
following.

function Add-Numbers ($x, $y) {

$z = $x + $y
Write-Host "$x + $y = $z"

}

In this example, a function named Add-Numbers has been defined that accepts two arguments,
$x and $y, which it then adds together. When this function is called for execution somewhere
within a PowerShell script, you must pass two arguments that correspond to the two param-
eters required by the function. You pass these arguments in much the same way that you pass
data to cmdlets, as demonstrated here:

Add-Numbers 3 4

When executed, this statement calls on the Add-Numbers function, passing it a value of 3
and 4. The function would then execute, displaying the results shown here:

3+4=17

Another option for setting up functions to accept arguments is to use the param keyword to
define each argument. When used, the param keyword must be the first word specified inside
the function’s code block. Arguments accepted by the function must be specified as param-
eters, separated by commas, all of which are enclosed within parentheses, as demonstrated
by the following.

function Add-Numbers {
param ($x, $y)

$z = $x + $y
Write-Host "$x + $y = $z"

}

This function can be called from anywhere within the PowerShell file in which it is defined,
as demonstrated here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Add-Numbers 1 6

When executed, the Add-Numbers function generates the results shown below.

1+6=7

Like many cmdlet parameters, function parameters are positional and named.
This means that you can pass arguments to functions as comma-separated lists,
provided that you arrange the arguments in the list to match up correctly with
corresponding parameters definedin the function, oryou can pass arguments by
specifying the name of a parameter followed by the argument to be passed to
that parameter. For example, the following statement demonstrates how to
pass arguments to the Add-Number function by position.

Add-Numbers 2 2

Likewise, the following example demonstrates how to pass arguments to the
Add-Numbers function by name.

Add-Numbers -x 2 -y 2

A function can also access arguments passed to it via the $args special variable. The $args
variable is an array that is automatically populated with a list of all incoming arguments that
have been passed to the function, as demonstrated in the following example.

function Add-Numbers {

$z = $args[0] + $args[1]
Write-Host "The total of all arguments passed is $z"

}

Here, the Add-Numbers function has been modified to reference two arguments that it expects
to receive as $args[0] and $args[1]. For example, if called by this statement

Add-Numbers 2 5

this new version of the Add-Numbers function would generate the following output.

The total of all arguments passed is 7

Since $args is an array, you can process it using a foreach loop, as demonstrated here:

function Add-Numbers {

foreach ($i in $args) {

Chapter 7 Organizing Scripts Using Functions @

$z += $i

Write-Host "The total of all arguments passed is $z"

}

This version of the Add-Numbers function can be called and passed any number of arguments,
as demonstrated by the following.

Add-Numbers 1 6 3 5 4

Using its foreach loop, the Add-Numbers function will total up each argument passed to it and
display similar to that shown here:

The total of all arguments passed is 19

While you can use either the param keyword or $args special variable to access
argument data passed to functions, | suggest that you stick with the paramkey-
word, since it requires that you explicitly identify each incoming argument,
making your code easier to read and understand.

Specifying Argument Data Type

Windows PowerShell also allows you to specify the data type of parameters in order to ensure
that only values of a specific data type are accepted. This is accomplished by specifying the
required data type as part of the parameter definition, as demonstrated here:

function Add-Numbers {
Param ([intl$x, [intl$y)

$z = $x + $y
Write-Host "$x + $y = $z"
}

In this example, [int] was pre-appended to the beginning of each parameter definition in
order to specify that both parameters accept only integer arguments. To see how this works,
you could create this function and then call on it to execute using the following statement.

Add-Numbers -x 2 -y 2

Next, you might try calling on the function using the following statement.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Add-Numbers -x A -y 2

In response, the following error message will be displayed.

Add-Numbers : Cannot convert value "A" to type "System.Int32". Error: "Inp
ut string was not in a correct format."

At C:\MyScripts\xxx.psl:14 char:15

+ Add-Numbers -x (KKK A -y 2

Asyou can see from the text of the error message, Windows PowerShell was not able to convert
the argument of A to an integer as required by the function. Now, if you were to go back and
remove the integer requirement for both of the function’s parameters, you could call on the
function as shown next and this time you won’t see an error message. Instead, PowerShell
appends both arguments together.

A+ 2 =A2

Windows PowerShell supports a wide range of data types. Table 7.1 lists a number of these
data types. You can specify any of these data types when defining function arguments.

TasLE 7.1 WiNDows POWERSHELL DATA TYPES

Data Type Data Type
[array] [hashtable]
[bool] lint]
[byte] [Llong]
[char] [single]
[decimal] [string]
[double] [switch]
[float]
\ J

Assigning Default Values to Arguments

Windows PowerShell also allows you to assign default values to function arguments, thus
initializing a default value that will be used in place of an argument when that argument is
not passed as expected to the function. For example, the Add-Numbers function, shown next,
has been modified to assign a default value of zero to both of its parameters.

function Add-Numbers {
Param ([intI$x = 0, [int]$y = 0)

Chapter 7 « Organizing Scripts Using Functions @

$z = $x + $y
Write-Host "$x + $y = $z"

}

If you were to call on this version with the Add Numbers function as shown below, Windows
PowerShell would assign 2 as the value of the $y parameter and 0 as the value of the $x
parameter.

Add-Numbers -y 2

When called as shown above, the Add-Numbers function generates the following output.

0+2=2

Processing Incoming Data

Functions get access to pipeline data through a special variable named $input. This variable
is automatically populated with all incoming pipeline objects before the function begins to
execute. If necessary, Windows PowerShell will delay the execution of a function until all
incoming pipeline object data has been collected.

As an example of how to access incoming pipeline object data, consider the following
example.

function Get-FileNames {
$input | Where-Object {$_.Name -ne "WINDOWS" } | Sort-Object

}

Here, a function named Get-FileNames has been defined. The function uses the $input variable
to collect any data passed to the function via the object pipeline. This data is then passed
down the pipeline to the Where-0Object cmdlet. The Where-Object cmdlet then filters out any
object reference to a folder named Windows. Any remaining object data is then passed to the
Sort-0Object cmdlet.

Before running the above example, you need to change the current working directory to the
root of your C: drive where the Windows folder resides, using the Set-Location cmdlet, as
demonstrated here:

Set-Location C:\

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

To run the function, and insert it into the object pipeline, you could type the following state-
ment. It executes the Get-ChildItem cmdlet and then pipes its output to the Get-Filenames

function.

Get-ChildItem | Get-Filenames

When executed, the function will display output similar to the following.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime
-a--- 3/3/2007 7:52 AM
-ar-s 3/3/2007 7:26 AM
-a--- 9/18/2006 5:43 PM
d---- 2/24/2008 9:29 PM
d---- 10/3/2008 11:47 AM
d---- 9/9/2008 7:20 PM
d-r-- 9/8/2008 11:44 PM
-a--- 3/3/2007 7:40 AM
d---- 7/7/2007 4:24 PM
d---- 10/8/2008 6:16 PM
d-r-- 4/26/2008 10:58 PM

Returning a Result

Length

396

Name
autoexec.bat
BOOTSECT.BAK
config.sys
DarkBASIC
MyScripts
Perflogs
Program Files
RHDSetup.log
ruby

Temp

Users

PowerShell functions are capable of returning data back to calling statements. This is accom-
plished by setting a variable to the value you want to return and then making a reference to
thatvariablein the last statement executed by the function, as demonstrated in the following

example.

function Add-Numbers {

Param ([int]l$x = 0, [intl$y = 0)

$result = $x + $y
$Result

Chapter 7 Organizing Scripts Using Functions

In this example, the Add-Numbers function takes two integer values passed to it as arguments
and adds them together. It then returns this result back to the statement that called it by
assigning the value to be returned to the $result variable, which is then referenced against
the last statement executed by the function. The following statements demonstrate how to
execute this version of the Add-Numbers function and then retrieve and display the data that
it returns.

$x = Add-Numbers 2 2
Write-Host "2 + 2 = $x"

When called, the function is passed arguments of 2 and 2. Once executed, the function returns
a value of 4, which is then assigned to the $x variable in the statement that executed it. The
proof that everything worked as expected is provided when the second statement shown
above executes and displays the following output.

2 +2 =14

Restricting Variable Scope

Up to this point in the book, all the examples that you have seen of variable usage have
involved the use of script-level variables, meaning that once defined, the variables could be
referenced from any location within your PowerShell scripts. However, now that functions
have been introduced, things are going to change.

As was discussed in Chapter 4, access to variables is restricted by scope. Within a PowerShell
script, any variable defined outside of a function is a script-level variable. Script-level variables
are also local variables to all parts of the script file residing outside of functions. However,
functions can still access script-level variables using a modified variable reference that
includes the script label. Specifically, script-level variables can be accessed directly by name
from any function defined within the script, using the following syntax.

$7ocalVariable = $script:variableName

Script-level scope is established each time a Windows PowerShell script is ex-
ecuted and ends when the script stops running.

Here, $70calVariable is the name of a new variable that is local to the function in which
it is defined. #script identifies the resource being referenced as a script-level variable and
variableName specifies the name assigned to the variable. For example, in the following exam-
ple, a script-level variable named $userName has been defined. Next, a call is made to a function

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

named Get-UserName. Within the function, the $userName variable is referenced and assigned
a value using the Read-Host cmdlet.

$userName =

function Get-UserName {
$script:userName = Read-Host "What is your name?"

Get-UserName
Write-Host "Hello $userName"

Variables can also be defined within functions. In this case, any such variables are local in
scope to the function. If you want, you can restrict access to these variables by declaring them
as private. Variables with a private scope can only be accessed within their current scope.
Therefore, a variable declared within a function that has a private scope can only be accessed
within its function, as demonstrated below.

function Get-UserName {

$private:x = Read-Host "What is your name?"
Write-Host "Hello $x"

Get-UserName

In this example, a variable named $x is declared inside the Get -UserName function and assigned
a value supplied by the user. The value of $x is then displayed by using Write-Host cmdlet,
which also resides inside the function. When executed, the name supplied by the user is
displayed. For example, if the user entered Wi11iam, the following output would be displayed.

Hello William

However, if you were to modify this example by moving the Write-Host statement outside of
the function, as shown below, the user’s name would not be displayed since $x has a private
scope and exists only within the function where it is defined.

function Get-UserName {

$private:x = Read-Host "What is your name?"

Chapter 7 Organizing Scripts Using Functions @

Get-UserName
write-Host "Hello $x"

When executed, this example displays the following output, regardless of the name entered
by the user.

Hello

Y Note that even though the value of $x does not exist outside of the script in
which it was defined, the preceding example will not generate an error because
Windows PowerShell does not force programmers to formally declare and ini-
tialize variable values prior to using them. While this may cause unexpected
problems in most scripts, in the preceding example this behavior allowed the
graceful transition.

REPLACING FUNCTIONS WITH FILTERS

A filter is very much like a function, except that instead of waiting for all incoming data to
be received and stored in $input, filters have immediate access to incoming data as it be-
comes available via the $_ variable. Filters are structured exactly like functions, except that
the filter keyword is specified in place of the function keyword, as demonstrated by the
following.

filter Get-0ddEven {
$x = $_ % 2

if ($x -eq 1) {
$result = "0dd"
}
else {
$result = "Even"

$result

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

In this example, a filter named Get-0ddEven has been created that determines whether a
number is odd or even. This filter takes any numeric value passed to it and divides it by 2
using the modulus operator (%). If the result of this operation yields a value of 1 then the value
passed to the function was an odd number; otherwise, it was an even number.

If called by the following statement
@(5, 4, 6) | Get-0ddEven

the Get-0ddEven function will display the following output.

0dd
Even
Even

In reality, filters and functions are pretty much equivalent. The difference being that filters
are able to act upon pipeline object data as soon as it becomes available through the $_ special
variables, whereas functions have to wait for all incoming pipeline data to arrive and populate
the $input variables before processing. To process a large list of data objects stored in the
$input variable, you will usually have to set up a loop inside a function in order to iterate
through each object. Filters also eliminate any need to use loops to process incoming data.
As a result of these differences, filters can be more efficient and result in faster processing
than functions when large amounts of data are being passed through the object pipeline.

Often, you can forgo the creation of custom filters and instead use the Foreach-0Object and
the Where-0bject cmdlets to filter data from the object pipeline. However, while these cmdlets
are sufficient for simple operations, to perform complex logical operations on pipeline data
you will need to set up a filter.

BAack To THE POWERSHELL HANGMAN GAME

Okay, itis time to turn your attention back to the chapter’s main game project, the PowerShell
Hangman game. The PowerShell Hangman game is a word guessing game in which the player
is challenged to guess a randomly selected secret word, a letter at a time. To win, the player
must guess each letter in the word in 12 guesses or fewer.

The overall construction of the PowerShell Hangman game will be completed in 11 steps, as
outlined here:

1. Create a new script file using the PowerShell script template.

2. Define and initialize game variables in the Initialization Section.
3. Define functions located in the Functions and Filters Section.

4. Prompt the player for permission to play the game.

5. Create a loop to control overall gameplay.

Chapter 7 Organizing Scripts Using Functions @

. Randomly select the game’s secret word.

. Create a loop to control the collection and analysis of player input.
. Collect and validate player guesses.

. Display the result of each guess.

10. Determine when the game is over.

11. Challenge the player to play again.

O 0 g D

Creating a New Script

The first step in the creation of the PowerShell Hangman game is to create a new script file
named Hangman.ps1 using the new version of the Windows PowerShell script template, as
shown below.

khkkkkhkkhkhhkhhhkhhhkhhhkhhhkhhhkhhhkk

#
Script Name: Hangman.psl (The PowerShell Hangman Game)

Version: 2.0

Author: Jerry Lee Ford, Jr.

Date: October 12, 2008

i

Description: This PowerShell script challenges the player to play
a computer version of Hangman

i

KAKAkRkhkKhkhkkkhkhhkhkhkhkhkkhkhkhkhkhkkhkhhkhkhkhhkkkhhhkhkhhhkhhhhhkhhkhkhhhkhhhhkkhkhhhkhkhhkkhrrkkhrxkx

Initialization Section
Functions and Filters Section

Main Processing Section

Defining and Initializing Script-Level Variables

The next step in the creation of the PowerShell Hangman game is to define and initialize
script-level variables. This is accomplished by adding the following statements to the initial-
ization section of the script file.

#Define variables used in this script
$playGame = "False" #Controls gameplay and when to stop gameplay
$response = "" #Store the player's input when prompted to play a game

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$randomNo = New-Object System.Random #This variable stores a random object
$number = 0 #Stores the game's randomly generated number

$secretWord = "" #Stores the secret word for the current round of play
$attempts = 0 {Keeps track of the number of valid guesses made
$status = "True" #Controls the current round of play

$guesses = "" #A 1ist of letters by the player during gameplay

$reply {#Stores player letter guesses

$tempstring {ffStores a display string with hidden characters that is used
ffto represent the secret word during gameplay

$validReply {Stores the player's response when prompted to play a new game

$rejectlist = "~1@#$% &-_={}1|\:;",.2/<>" #String 1isting unacceptable input

$GuessesRemaining #Keeps track of the number of guesses the player has left

fiCreate an Associative array and load it with words

$words = @{}

$words[0] = @("", "", """, onv,omnponnomn omwonn omn o wn owwown onny
$words[1] = @("C", "O", "M", "M", "A", "N", "D", "E", "R")
$words[2] = @("F", "L", "A", "G")

$words[3] = @("T", "0O", "A", "S", "T", "E", "R")

$words[4] = @("M", "A", "R", "K", "E", "R")

$words[5] = @("P", "I", "C", "T", "U", "R", "E")

$words[6] = @("D", "E", "S", "K")

$words[7] = @("G", "L", "O", "B", "E")

$words[8] = @("S", "P", "E", "A", "K", "E", "R")

$words[9] = @("B", "A", "C", "K", "Y", "A", "R", "D")
$words[10] = @("P", "E", "N", "C", "I", "L")

Comments have been added that describe the use and purpose of each variable. Take note of
the $words array, which is used to store 10 words from which the game will randomly select
each time a new game is played. Each element in the $words array is actually an array itself
whose elements consist of the letters that spell out a given word. Also note that $words[0]
contains a list of 10 empty strings and not the letters of a game word. This array is used later
in the script to keep track of correct player guesses.

Defining Custom Functions
The PowerShell Hangman game has one custom function, shown next, that you need to
add to the script’s functions and filters section of the script file. The function’s name is

Chapter 7 Organizing Scripts Using Functions @

Check-Answer and, as its name implies, its job is to determine whether the player’s guess is
correct.

#This function determines if the player's guess is correct or incorrect
function Check-Answer {
param ($reply) {fArgument containing the player's guess

f#Access script-level variable representing valid users guesses and
#fadd the current guess to it
$script:guesses = $script:guesses +

+ $reply

ffLoop through each letter in the secret word (e.g., each element in the
ffarray) and see if it matches the player's guess
for ($1 = 0; $i -le $secretWord.length - 1; $i++) {
if ($secretWord[$i] -ne $reply) { #The guess does not match
#Place an underscore character into $word[0] in place of the letter
if ($words[OI[$i] -eq "") {$words[OI[$i] = "_"}
}
else { {#The guess matches
f#fPTace the letter being guessed into $word[0]
$words[01[$1] = $reply

}

This function begins by defining a parameter named $reply, which will be used to store the
player’s most recent guess. The first thing this function does after being called is append the
letter being processed ($reply) to a script-level variable named $guesses. $guesses is used to
store a string containing all of the guesses made by the player and is displayed later in the
game to remind the player of the number of guesses that have already been made.

Next, a for loop is set up to iterate through the contents of an array named $secretWord. This
array is populated later in the script file with a copy of all the letters that make up the game’s
randomly selected secret word. The loop iterates through each letter (array element) that
makes up the secret word. If the loop finds a letter in the secret word that matches the player’s
guess, it writes that to the corresponding array element in the $word[0] array. Thus all of the
letters that make up the game’s secret word are represented by the _ characters and since
letters are guesses, the appropriate _ character is replaced by the letter guessed by the player.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Prompting the Player to Start the Game

Before starting a new round of play, the game requires that the player give it permission to
do so. This is accomplished by adding the following statements to the beginning of the script
file’s main processing section.

#Prompt the player to guess a number
while ($playGame -ne "True") {

Clear-Host {Clear the Windows command console screen

#Display the game's opening screen
Write-Host ""n"n n°n"

write-Host " Welcome to the FIXKFKFKAN
Write-Host " * x"
Write-host " PowerShell Hangman Game! 0 x"
Write-host " | *"
Write-host " | *"
Write-host " /\ *"
Write-host " x"
Write-host " x"
Write-host " *"
Write-host " FAKAFKAN

f#Collect the player's guess

sssssss

$response = Read-Host "“n"n'nn n nn’n Would you Tike to play? (Y/N)"

ffvalidate the player's input

if ($response -eq "Y"){
$playGame = "True"

1

elseif ($response -eq "N") {
Clear-Host
Write-host " “n'n Please return and play again soon."
Read-Host
exit

1

else {
Clear-Host

Chapter 7 Organizing Scripts Using Functions @

Write-Host "“n°n Invalid input. Please press Enter try again."
Read-Host

}

As you can see, this part of the script is controlled by a while loop that iterates until the value
of $playGame is set equal to True. Within the loop, a text-based graphic showing the hangman
character is displayed and the player is prompted to enter a value of Y or N. If the player
responds by entering Y, the value of $playGame is set to True, and as a result, the while loop
ends and the rest of the script is executed.

If the player responds instead by entering N, the exit command is run, thus terminating the
execution of the game. If the player responds by entering anything else, the loop runs again
to prompt the player to enter a valid selection.

Setting Up a Loop to Control Gameplay

The rest of the script is controlled by a while loop that executes until the player decides to
end the game. The statements that make up this loop are shown next and should be appended
to the end of the script’s main processing section. The rest of the statements that make up
this script will be embedded within this loop.

#Prompt the player to guess a number
while ($status -eq "True") {

Selecting a Secret Word
The next step in the development of the PowerShell Hangman game is to embed the following
statements in the script’s main loop.

fflReset variables at the beginning of each new round of play

$tempString = ""

$words[0] = @("", ™", ", "v,onv,omnnnonnomnwn nn o mn oy
$attempts = 0

$guesses = ""

$reply = ""

ffGenerate a random number between 1 and 10

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$number = $randomNo.Next(1l, 11)

$secretWord = $words[$number] #Populate an array with the letters that
fimake up the game's secret word using the
f#irandom number to specify the array index

A new round of gameplay begins each time this loop iterates. When this happens, a number
of variables needs to be reset to their default values to get the game ready. Also, a random
number must be generated and used to select a new word for the player to guess.

Setting Up a Loop to Process User Guesses

Next, another loop needs to be set up to collect and process the player’s guesses. The code
statements that perform this task are shown next and should be embedded inside of the
game’s main loop, immediately after the last set of statements that you entered.

fiCreate a Toop to collect and analyze player input
while ($reply -eq "") {

Collecting and Validating User Input

Next, you need to add the statements that are responsible for collecting and validating player
input. These statements are shown next and should be embedded within the previous while
loop.

Clear-Host #Clear the Windows command console screen

$reply = Read-Host "'n°n Enter a guess" {Collect the player answer

if ($reply -eq "") { #If an empty string was submitted, repeat the
continue #loop

#It is time to validate player input

if ($reply.Length -gt 1) { #Limit input to one character at a time

Clear-Host {Clear the Windows command console screen

Chapter 7 Organizing Scripts Using Functions

Write-Host ""n'n Error: You may enter only one letter at a time."
$reply = "" #Clear out the player's input
continue {ffRepeat the loop

if (1234567890 -match $reply) { {Numeric input is not allowed

Clear-Host #Clear the Windows command console screen
Write-Host "“n'n Error: Numeric guesses are not allowed."
$reply = "" {Clear out the player's input

continue {fRepeat the loop

if ($rejectlist -match $reply) {

Clear-Host #Clear the Windows command console screen
Write-Host "“n'n Error: Special characters are not permitted."
$reply = "" #Clear out the player's input

continue #Repeat the Toop

Clear-Host #Clear the Windows command console screen

$attempts++ {#O0nly increment for good guesses

The loop begins by prompting the player to enter a guess (e.g., a letter). The player’s input is
then assigned to a variable named $reply. A check is made to ensure that the player did not
respond by simply pressing the Enter key. If this is the case the continue command is executed
and the loop iterates and runs again.

Take note of the two expressions evaluated as the condition for the last two if
statements listed above. These expressions use the -match comparison operator
todetermineif aspecified matching conditionis found. You will Learn more about
the -match operator in Chapter 8, “Working with Files and Folders.”

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Next, a series of if statements is executed. Each if statement is responsible for helping to
validate a different aspect of the player’s input. The first i f statement executes the continue
command if it finds that the player entered two or more characters as input. The second i f
statement checks to see if the player entered a number instead of a letter. The third if state-
ment checks to see if the player entered a special character instead of a letter. A list of special
characters is stored in $rejectlList. If a special character is found, the continue command is
executed.

If none of the three i f statements finds a problem with the player’s input, the player’s guess
is considered to be valid and the value of $attempts is incremented by 1. Note that since each
if statement’s code block executes the continue command when invalid input is found, the
value of $attempts is not incremented for these guesses and thus the guesses do not count
against the player.

Displaying the Results of Each Guess

Once a valid guess has been made, the game needs to process it and display the information
showing the player the current status of the game. This is accomplished by adding the fol-
lowing statements to the bottom of the previous while loop, immediately after the last set of
statements that you just added.

#fiNow that player input has been validated, call on the Check-Answer
fifunction to process the input
Check-Answer $reply

$tempString = #Clear out this variable used to display the

ffcurrent state of the word being guessed

#fLoop through $words[0] and create a temporary display string that
ffshows the state of the word being guessed
for ($i = 0; $i -le $words[0].Tength - 1; $i++) {

$tempString = $tempString + " " + $words[0][$1]

fiDisplay the current state of the secret word based on the input
ficollected from the player
Write-Host ""n°n Results:'n
Write-Host " --------------"---"--“"-““---o o n"
Write-Host " $tempString™n"

Write-Host " -----------------omee oo ntn"

Chapter 7 Organizing Scripts Using Functions

Write-Host " Letters that have been guessed: $guesses™n"

#Calculate the number of guesses that the player has left
$GuessesRemaining = (12 - $attempts)

#Display the number of guesses remaining in the current round of play
Write-Host " Number of guesses remaining: $GuessesRemaining"

The first statement shown above calls on the script’s Check-Answer function, passing it the
player’s guess as an argument. Next, a variable named $tempString is cleared out and then
assigned the contents stored in the $words[0] array, thus creating a string representing the
current state of the game’s secret word, as guessed by the player. This string is then displayed.
The value of $guesses is also displayed, showing the player how many letters have been
guessed so far. Lastly, the value of $guessesRemaining is calculated and displayed, showing the
player how many guesses are left.

Determining When the Game Is Over
Now it is time to see if the game is over. Gameplay ends when either the player guesses the
game’s secret word or the number of guesses has been exhausted. To accomplish these two
checks, add the following statements to the bottom of the previous while loop, immediately
after the last set of statements that you just added.

ffPause the game to allow the player to review the game's status
Read-Host ""n"n'nn'n'n'n"n'n Press Enter to continue"

#The secret word has been guessed if there are no more underscore
ficharacters left
if ($tempString -notmatch "_") {

Write-Host ""n Game over. You have guessed the secret word!" °
"in $attempts guesses. n'n"

Write-Host " The secret word was $secretWord "n'n"

Write-Host "“n'n"nn'n'n'n°n" °
"*n'n’nnn'n'n"

Read-Host #Pause gameplay

$reply = "Done" #Signal the end of the current round of play

continue #Repeat the Toop

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

#The player is only allowed 12 guesses, after which the game ends
if ($attempts -eq 12) {

Clear-Host

Write-Host ""n Game over. You have exceeded the maximum allowed" °
"number of guesses. n'n"

Write-Host " The secret word was $secretWord "n'n"

Write-Host " The best you could do was $tempString'n'n'n'n'n'n’n'n
"*n‘'n’n*nn'n°n"

Read-Host {fPause the game

$reply = "Done" 4signal the end of the current round of play

continue #Repeat the Toop

$reply = "" {fClear out the player's input

As you can see, the statements shown above are organized into two if statements. The first
if statement checks to see if the player has won the game. If this is the case, then every letter
that makes up the secret word will have been guessed and the value stored in $tempString
will not contain any _ characters. The second if statement checks to see if the value of
$attempts is equal to 12, indicating that the player has run out of guesses without discovering
the game’s secret word. If either of the two conditions tested by these two i f statements proves
true, the value of $reply is set equal to Done, terminating the execution of the while loop that
is responsible for collecting and processing player input.

Challenging the Player to Play Another Game

Finally, to wrap up the PowerShell Hangman game, you need to add the following statements
at the bottom of the game’s main while loop. These statements are responsible for challenging
the player to play another game.

$response = "" {Reset value to allow the Toop to continue iterating

#It is time to prompt the player to play another round
$validReply = "False" #Set variable to ready its use in the while Toop

fflLoop until valid input is received
while ($validReply -ne "True") {

Chapter 7 Organizing Scripts Using Functions

Clear-Host #Clear the Windows command console screen

#Prompt the player to play a new game
$response = Read-Host "“n'n Play again? (Y/N)"

f#validate the player's input #Keep playing
if ($response -eq "Y"){

$validReply = "True"
$status = "True"

}
elseif ($response -eq "N") { #Time to quit

Clear-Host {fClear the Windows command console screen
Write-host " “n°n Please return and play again soon."
Read-Host #Pause gameplay

$validReply = "True"

$status = "False"”

}
else { {Invalid input received

Clear-Host {fClear the Windows command console screen

Write-Host "“n'n Invalid input. Please press Enter to try again.”
f$validReply = "False"

Read-Host #Pause gameplay

}

As you can see, the player is required to provide a response of Y or N. Entering Y starts a new
round of play. Entering N results in $validReply being set to True, thus ending the execution
of the script’s main while loop, effectively terminating the script.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

SUMMARY

This chapter showed you how to use functions and filters as a means of improving the overall
organization and structure of your Windows PowerShell scripts. You learned how functions
support the centralization of programming logic, reduce the overall size of scripts, and sup-
port code reuse. You learned how to define and execute functions. You learned how to pass
arguments and return results. You also learned how to insert functions in the object pipeline.
You learned how functions affect variable scope as well as how to access script-level variables
within functions. On top of all this, you learned how to develop filters as an alternative to
functions, in order to more efficiently process large amounts of object pipeline data.

Now, before you move on and begin reading Chapter 8, I suggest you take a little extra time
to improve the PowerShell Hangman game by tackling the following list of challenges.

CHALLENGES

. Asitis currently written, the PowerShell Hangman game gives
the player |2 guesses to figure out the game’s secret word. To
make this game work more like the traditional children’sgame,
change things so that the player is only allowed to make six
incorrectguesses. This way correct guesses will notbe counted
against the player. You may also want to associate each guess
with a body part. For example, the first miss would represent
a head, the second miss would represent the body, the third
andfourth misses mightrepresentarms, and the fifthandsixth
misses would represent legs. You might even try displaying a
text-based graphic, similar to that of the game’s opening
menu, at the end of each turn. You could use this graphic to
represent the number of misses (e.g., after the first missed
guess the graphic would show a head, after the second missed
guess it would show the head and body, and so on).

2. Currently, the PowerShell Hangman game only has 10 words
torandomly choose from. To make the game more challenging,
consider modifying the game to support 20 or 30 different
words.

Chapter 7 Organizing Scripts Using Functions

3. As currently written, the game only has one custom function,
whichisresponsible for determiningif the player’s guessesare
correct. However, there are numerous opportunities for
further modularizing the script by reorganizing different parts
of it into functions. Review the code in the main processing
section of the script and look for opportunities to enhance its
organization with functions.

4. The way the PowerShell Hangman game is currently written, it
is possible for the player to figure out what the game’s secret
word is too late in the game for the player to have enough
guesses left to finish supplying each of the letters that make
up the secret word. Address this situation by giving the player
the optionoftypingintheentirewordinplace of herlastguess.

5. As currently designed, the PowerShell Hangman game
prevents the player from entering two characters at a time,
entering numeric or special characters, or even just pressing
the Enter key without keying in a guess. However, there is no
logicin place to prevent the player from accidentally entering
the same valid guess more than once. Consider modifying the
script to prevent this from being allowed.

This page intentionally left blank

Part

Advanced Topics

This page intentionally left blank

(cHAPTER)

WORKING WITH FILES AND
F OLDERS

indows PowerShell provides access to cmdlets that allow you to work

with files and folders in many ways. This chapter will teach you how to

develop PowerShell scripts that can create, delete, rename, copy, and move
files and folders. You will learn how to determine if files and folders exist before
you attempt to work with them. This chapter will also show you how to write to
and read data from files. You will learn how to work with different types of files,
including plain text files, CSV files, and XML files. You will also learn how to use
regular expressions to specify matching file and folder names and to use other
cmdlets that allow you to control the format of cmdlet output and to print the
output provided by cmdlets or stored in text files.

Specifically, you will learn how to:
* Administer files and folders
* Write to and read from different types of files

* Use regular expressions to perform complex pattern matching

* Control the display of cmdlet output using formatting cmdlets

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE POWERSHELL Tic-TAc-Toe GAME

This chapter’s game project is an implementation of the classic Tic-Tac-Toe game. This game
requires two players and begins by displaying the screen shown in Figure 8.1.

| £ Windows Pawershell o) =]

Welcome to the]

TIC-TAnG-TOE

GAHME?!?

=

The welcome
screen for the Tic-
Tac-Toe game.

Would you like to play? (YrH):

The welcome screen also prompts players for permission to start a new game. Once that per-
mission is given, the screen shown in Figure 8.2 appears, prompting Player X to make a move.

= Windows PowerShell _|of x|
TIC - TAC -TOE :I
1 2 3
n : H
v
FiGURE 8.2 & ;
Player X is always
the first player to
make a move in Player #'s turn: -
each game.]

Moves are made by entering the coordinates of an available game board square, as demon-
strated in Figure 8.3.

Valid moves are A1-C3. Any other moves are rejected by the game. In addition, the game
rejects moves that have already been made, thus preventing one player from selecting a
square that was already selected earlier in the game.

Chapter 8 « Working with Files and Folders @

|22 Windows Powershell N=1E]|
TG = L AT 0E j
1 2 3
M = 4]

=
(=]

[z}

“
Square Cl is being

(| Player #’s turn: C1 | specified as Player
X’s next move.

Gameplay ends when one player manages to line up three squares in a row, as demonstrated
in Figure 8.4.

= Windows PowersShell =lof=|
TIC - TAC —-TOE j
1 2 3
fn " ; 0 ;
B oot
C X ; i} ; %
FIGURE 8.4
Game over. 0 has won. Press Enter to continue: __J Player O has won
the game.

The game also ends once every game board square has been selected without either player
managing to win. In this case a tie is declared, as demonstrated in Figure 8.5.

Players are prompted to play again at the end of each game. If the players elect to start a new
game, the game board is cleared and Player X is prompted to make a move. Otherwise, the
players are invited to return and play again and the game closes.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

25 Windows PowerShell B [=1 T |
TIC - TACGC —-TOE :I
1 2 3
fn " 0 b
B ¥ 0 0
C i} ¥ %
FiGURE 8.5
The game has The game has ended in a tie. Press Enter to continue: __J
ended in a tie.

UsING THE POWER OF REGULAR EXPRESSIONS

Up to this point in the book, you have been validating data based on expected input, such as
Y or N, when prompting the user for permission to perform a given action. However, there
will be times when you are unable to strictly control the input provided to your PowerShell
scripts. Instead, you must be prepared to accept any of a host of different inputs. To accom-
modate this type of situation, you need to learn how to work with regular expressions. A
regular expression is a pattern used to describe matching data. Regular expressions have many
uses and benefits. For example, regular expressions can be used to facilitate string searches
within text documents. As this chapter’s game project demonstrates, regular expressions are
also an important tool that can be used to validate user input.

Matching Simple Patterns

Regular expressions are generally evaluated from left to right. Windows PowerShell imple-
ments regular expressions using the -match operator. Matches occur when a specified pattern
is found in a specified source string. Perhaps the simplest regular expression pattern is one
that defines a specific pattern made up of one or more characters, as demonstrated by the
following.

if ("Once upon a time" -match "ONCE") {
Write-Host "Match!"
}

Here, the source string "Once upon a time" is searched to see if it contains a matching pattern
of "ONCE". When executed, this example results in a match. By default, matches are not case-
sensitive. However, using the -cmatch operator, you can perform case-sensitive matches, as
demonstrated here:

Chapter 8 « Working with Files and Folders @

if ("Once upon a time" -cmatch "ONCE") {
Write-Host "We have a match!"
}

In this example, a match does not occur. Windows PowerShell also makes it easy for you to
perform negative pattern matching operations by supplying you with the -notmatch operator,
which can be used as demonstrated by the following.

if ("Once upon a time" -notmatch "XXX") {
Write-Host "We have a match!"
}

Here, a match occurs because the pattern being searched for cannot be found in the specified
search string. Windows PowerShell also allows you to perform case-sensitive pattern match-
ing using the -cnotmatch operators, as demonstrated next.

if ("Once upon a time " -cnotmatch "XXX") {
Write-Host "We have a match!"
}

When executed, this example results in a match because the expression being searched for
is found in the search string.

Matching Alternative Patterns

Windows PowerShell’s support for regular expressions also lets you set up pattern matches
that can look for different sets of possible matches. To specify this type of pattern match, you
use the | character in order to separate each possible matching string.

if ("mar" -match "war|mar|jar") {
Write-Host "Match!"
}

In this example, a pattern has been defined that looks for any of three matching patterns. If
any one of these patterns is found, the match is successful. To be more efficient, you could
rewrite the previous example, as demonstrated next.

if ("mar" -match "(wa|malja)r") {
Write-Host "Match!"
}

In this more efficient pattern, the unique portions of each possible pattern match have been
grouped together and enclosed within parentheses and the shared portion of the pattern
match has been placed outside of the parentheses.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Working with Regular Expression Characters

Every character included as part of a regular expression will match itself. However, Windows
PowerShell supports a collection of regular expression characters, also known as metachar-
acters, that are an exception to this rule. A metacharacter is a character that alters the manner
in which a pattern match is evaluated. For example, consider the following.

if ("The winner of this year's award is Mrs. Ford!" -match "Mr.") {
Write-Host "Match!"
}

In this example, a regular expression has been set up to match against the characters Mr
followed by an optional character, as represented by the . character. The . character is a
metacharacter that is used to define a pattern that matches any one character. As a result,
Mr., Mrs., and even Mrt will all match the "Mr." pattern. If you really wanted to match the
period character as a period and not as a metacharacter, then you would need to precede it
with a \, as demonstrated below.

if ("The winner of this year's award is Mrs. Ford!" -match "Mr\.") {
Write-Host "Match!"
}

The . and \ characters used in the two previous examples are just two of a number of
metacharacters supported by Windows PowerShell. Table 8.1 provides a list of additional
regular expression characters.

TaeLE 8.1 REGULAR ExPRESSION CHARACTERS (METACHARACTERS)

Character Description Example

. Matches a single character "Molly" -match "M....y"

[value] Matchesatleastone characterspecifiedinsidebrackets ~ "Molly" -match "M[io]lly"

[range] Matches at Lleast one character specified withinarange ~ "Randy" -match "[R-Tlandy"

" Matches any character except those specified within "Randy" -match "[gRClandy"
brackets

A Matches characters located at the beginning of astring ~ "William" -match "gWil"

$ Matches characters located at the end of a string "William" -match "iam$"

* Matches zero or more occurrences of the preceding "Daddy" -match "d*"
character

? Matches zero or one occurrence of the preceding "Daddy" -match "d?"
character

\ Matches the character following the escape (\) "Big$" -match "Big\$"
character

N _J

Chapter 8 « Working with Files and Folders @

Working with Quantifiers

Using regular expressions, you can also set up patterns that match based on the number of
repeating matches. This is accomplished using the regular expression quantifiers listed in
Table 8.2.

TABLE 8.2 REGULAR EXPRESSION QUANTIFIERS

Character Description Example
o Must match zero or more times "ss" -match "\w*"
+ Must match one or more times "123123123" -match " 123+"
? Must match no more than one time "ss" -match "\w?"
{n} Must match n times "ss" -match "\w{2}"
{n,} Must match at Least n matches "ss" -match "\w{2,}"
{n,m} Must match at least n, but not more than m times "ss" -match "\w{2,3}"
N _g

For example, the following statement demonstrates how to set up a regular expression that
matches on one or more occurrences using the + regular expression quantifier character.

if ("The winner of this year's award is Mrs. Ford!" -match "win+er") {
Write-Host "Match!"
}

Here, a match occurs if the string being searched contains a substring that matches the pat-
tern of "win+er". This pattern looks for the letter wi followed by one or more instances of the
letter n, followed by the letters er. Therefore, this pattern will match up against the word
winner.

Matching Patterns Based on Ranges

Regular expressions also provide the ability to develop a pattern that looks for a specific type
of data or that searches for a range of characters. This can be accomplished by using the
character class patterns outlined in Table 8.3.

Note that to work with character class patterns, you must enclose them inside a pair of
matching brackets ([]), as demonstrated next.

if ("March 13th" -match "[0-91") {
Write-Host "Match!"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

TABLE 8.3 CHARACTER CLASS PATTERNS

Pattern Description
[abc] Matches any of the specified lowercase characters
[abcdefghijklmnopgrstuvwxyz] Matches any lowercase letter in the alphabet
[a-z] Shorthand for specifying a match on any lowercase letter
[A-Z] Shorthand for specifying a match on any uppercase letter
[0123456789] Matches a number between 0-9
[0-9] Shorthand specifying a match between 0-9
" S

Here, a regular expression has been set up to look for the occurrence of a numeric match
between 0 and 9. When executed, this example finds a match. However, the following example
would not find a match.

if ("March Thirteenth" -match "[0-9]") {
Write-Host "Match!"
}

Character classes are so commonly used in developing regular expressions that a series of
shortcuts, listed in Table 8.4, has been developed to make them more convenient to work
with.

TABLE 8.4 CHARACTER CLASS SHORTCUTS

Shortcut Description
\d Equivalent to [0 - 9]
\w Equivalent to [0-9A-Za-z_]
\s Equivalent to [\t\f\r\n\v]
\D Matches any character besides [0 - 9]
\wW Matches any character besides [0-9A-Za-z_]
L\S matches any character besides [\t\f\r\n\v]
_g

For example, the following if statement sets up a regular expression that results in a match
as long as no numeric characters are found in the string being searched.

if ("I am forty two." -match "\D") {
Write-Host "Match!"

Chapter 8 « Working with Files and Folders @

Likewise, the following example sets up a regular expression to search a string to make sure
that it contains numeric characters.

if ("I am 42." -match "\d") {
Write-Host "Match!"

This review of Windows PowerShell’s support for regular expressions has been
relatively brief. An in-depth discussion about regular expressions is beyond the
scope of this book. To learn more, read Mastering Regular Expressions, Second
Edition (ISBN: 0596002890). You can also enter the following command at the
PowerShell command prompt.

Get-Help about_regular_expression

ADMINISTERING FILES AND FOLDERS

Windows PowerShell provides ways of administering files and folders on your computer. It
allows you to create, rename, copy, move, or delete files and folders.

If you are going to follow along with the examples provided in the sections that
follow,youwill need to make sure thatyou have similarly namedfilesand folders
on your computer for things to work correctly.

Verifying File and Folder Existence

As was just stated, Windows PowerShell provides you with the tools needed to administer
files and folders. However, before you attempt to administer a file or folder, it is a good idea
to first check and make sure that the file or folder exists. After all, files and folders can dis-
appear for any number of reasons. For example, someone else using the computer might
delete them or rename them. To see if a file exists, you use the Test-Path cmdlet, as demon-
strated by the following.

$fileFound = Test-Path C:\MyScripts\Hangman.psl

if ($fileFound -eq "True") {
Write-Host "File found."
}

In this example, a variable named $fileFound is set to True or False based on whether the
Test-Path cmdlet is able to find a file named hangman.psl in the C:\MyScripts folder. The
Test-Path cmdlet can also be used to determine whether a folder exists, as demonstrated here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$fileFound = Test-Path C:\MyScripts

if ($fileFound -eq "True") {
Write-Host "Folder found."
}

In this example, MyScripts is a folder residing at the root of the computer’s C: drive. Once you
have used the Test-Path cmdlet to ensure that the file or folder you want to work with exists,
you can perform a host of administrative operations on the file or folder, as demonstrated in
the sections that follow.

Retrieving File and Folder Information

As the following example shows, you can use the Get-Item cmdlet to retrieve information
about a given file or folder. In this example, the Mode, LastWriteTime, Length, and Name prop-
erties of the hangmang.psl file are displayed.

PS C:\MyScripts> Get-Item hangman.psl
Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

-a--- 10/13/2008 3:24 PM 9948 hangman.psl

PS C:\MyScripts>

Using the Get-Item cmdlet, you can easily create a script that retrieves a specific property
value for a file or folders, as demonstrated here:

$fileFound = Test-Path C:\MyScripts\Hangman.psl

if ($fileFound -eq "True") {
$TastWritten = $(Get-Item C:\MyScripts\hangman.psl).LastWriteTime

Write-Host $lastWritten

Here, the Test-Path cmdlet is used to make sure that the Hangman.psl file exists. If it does,
the Get-Item cmdlet is then passed C:\MyScripts\hangman.psl as an argument. Note that the
Get-Item cmdlet and its argument are enclosed within parentheses and preceded by a $

Chapter 8 « Working with Files and Folders

character in order to establish an object reference. Once the reference is set up, related object
properties can then be accessed using standard dot notation. When executed, this example
will generate output similar to that shown below, assuming that the specified file exists.

10/13/2008 3:24:48 PM

Copying and Moving Files and Folders

Windows PowerShell also provides the ability to copy and move files and folders. This is
accomplished using the Copy-Itemand Move-Item cmdlets. For example, the following example
demonstrates how to copy a file from one folder to another.

Copy-Item C:\System.log C:\Temp

In this example, a file named System.log is copied from the root of the C: drive to the
C:\Temp folder. If necessary, you can use wild-card characters to copy multiple files from
one folder to another, as demonstrated here:

Copy-Item C:*.1log C:\Temp
Here, any .1og files found on the root of C: are copied to C:\Temp.

You can also use the Copy - Item cmdlet to copy one folder into another folder, as demonstrated
here:

Copy-Item C:\MyScripts C:\Temp

When executed, this statement makes a copy of the C:\MyScripts folder and places it in the
C:\Temp folder. However, none of the contents of the C:\MyScripts are copied, just a copy of
the folder itself. You can modify this example by passing the -recurse parameter to the
Copy-Item cmdlet in order to instruct Windows PowerShell to recursively copy a folder and
all its contents, including any subfolders, into another folder, as shown here:

Copy-Item C:\MyScripts C:\Temp -recurse

Using the Move-Item cmdlet, Windows PowerShell also lets you move files and folders. For
example, the following example demonstrates how to copy a file from one folder to another.

Move-Item C:\System.log C:\Temp

Cmdlets such as Move-Item may require administrator rights to perform certain
file actions, so if you get an error when executing the Move-Item cmdlet, close
your Windows PowerShell consoleandreopenitusingtheRun As Administrator
option.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Use wildcard characters to move multiple files from one folder to another, as shown here:
Move-Item C:*.1og C:\Temp

By default, the Move-Item cmdlet will not override and replace any existing files in the desti-
nation folder. However, by adding the -force parameter, you can instruct the Move-Item
cmdlet to overwrite and replace existing filenames.

Move-Item C:*.1og C:\Temp -force

Deleting Files and Folders

Windows PowerShell allows you to delete files and folders by using the Remove-Item cmdlet.
For example, the following statement can be used to delete a file named Report.txt located
in the C:\Temp folder.

Remove-Item C:\Temp\Report.txt

Using wildcard characters, you can remove groups of files from a folder, as demonstrated
here:

Remove-Item C:\Temp*.txt

You can use the Remove-Itemcmdlet to delete both files and folders. For example, the following
statement instructs PowerShell to delete all the files and folders stored in a folder named
C:\Temp\HP_WebReTease.

Remove-Item C:\Temp\HP_WebReTease*

In response to this statement, PowerShell will display output similar to that shown next,
prompting you for permission to delete all of the folders found inside C: \Temp\HP_WebReTease.

The item at C:\Temp\HP_WebRelease\chs has children and the -recurse parameter
was not specified. If you continue, all children will be removed with the item.
Are you sure you want to continue?

[Y] Yes [A] Yes to A1T [N] No [L] No to AT1 [S] Suspend [?] Help

(default is "Y"):

If you want, you can reformulate the previous command by passing any of the following
parameters to the Remove-Item cmdlet.

* -recurse. Bypasses the display of the previous prompt message, instructing the
Remove-Item cmdlet to recursively remove all contents.

e -exclude. Allows you to include a comma-separated list of files to exclude when the
Remove-Item cmdlet executes.

Chapter 8 « Working with Files and Folders

e -include. Allows you to include a comma-separated list of files to include when the
Remove-Item cmdlet executes.

* -whatif. Instructs the Remove-Item cmdlet to display a list showing the files and folder
that it would have deleted had the -whatif parameter not been specified.

Renaming Files and Folders
Windows PowerShell allows you to programmatically rename files using the Rename-Item
cmdlet, as demonstrated here:

Rename-Item C:\MyScripts\Test.psl Testl.psl

Here, two arguments are passed to the Rename-Item. The first argument is the name and path
of the file to be renamed, and the second argument is the new name that is to be assigned.
You may also use the Rename-Item cmdlet to rename a folder, as demonstrated here:

Rename-Item C:\MyFolder TestFolder

Searching Files

In addition to looking for, copying, moving, renaming, and deleting files and folders, Win-
dows PowerShell allows you to search inside text files. This is accomplished using the
Get-Content and the Select-String cmdlets. For example, let’s say you had a log file named
System.log that contained the following text.

10/07/2007 08:00:01 System backup started

10/07/2007 09:16:33 System backup completed

10/08/2007 08:00:01 System backup started

10/08/2007 09:13:13 System backup completed

10/09/2007 08:00:01 System backup started

10/09/2007 08:00:05 Error code 995 - Unable to locate backup media
10/10/2007 08:00:01 System backup started

10/10/2007 09:22:11 System backup completed

The Get-Content cmdlet provides you with the ability to read lines of text from a text file. The
Select-String cmdlet gives you the ability to search a text string to see if it contains a sub-
string. For example, you could search the log file shown above and look for any errors that
may have occurred, as demonstrated here:

Get-Content C:\Temp\System.log | Select-String "Error"

Here, the Get-Content cmdlet is executed and passed C:\Temp\System.log as an argument.
Next, each line in the log file is passed down the object pipeline and processed by the

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Select-String cmdlet, which has been told to look for the text Error inside each line. Any
lines of text that include this text are then displayed. When executed, this command will
generate the following output.

10/09/2007 08:00:05 Error code 995 - Unable to locate backup media

You can also use regular expressions to define a search pattern that you want to look for when
searching text files and then display a text message indicating when a match occurs. For
example, the following statements use the Get-Content cmdlet to assign the contents of a text
file to an array variable named $records. Next, an if statement has been set up that uses the
-match operator in order to define a regular expression that looks for occurrences of the words
error, alert, and critical in any of the lines stored inside $records.

$records = Get-Content C:\Temp\System.Tlog

if ($records -match "(error|alert|critical)") {
Write-Host "Match!"

READING FROM AND WRITING TO FILES

In addition to providing you with the tools required to administer files and folders, Windows
PowerShell also provides access to a number of cmdlets that you can use to create files and
folders as well as read from and write to different types of files, including text, CVS, and
XML files.

Creating Files and Folders
Windows PowerShell provides programmers with many ways to create new files. One way to
create a new text file and to write data to it is to use the > redirection operator.

Get-ChildItem > C:\Temp\DirectoryList.txt

When executed, this statement takes the output of the Get-ChildItem cmdlet and redirects it
into the C:\Temp\DirectorylList.txt. As a result, if you open the DirectoryList.txt file, you’ll
see that it contains data similar to the following output.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name
-a--- 9/26/2008 9:14 PM 4661 FortuneTeller.psl
-a--- 10/9/2008 12:11 AM 4734 GuessMyNumber.psl

-a--- 10/05/2008 2:32 PM 10176 Hangman.psl

Chapter 8 « Working with Files and Folders

If the file being written to already exists, its contents are replaced. To append to
the end of afile, use the >> pipe operator, as demonstrated below.

Get-ChildItem >> C:\Temp\DirectorylList.txt

Alternatively, you can create a new file using the New- Item cmdlet. For example, the following
statement will create a new empty file named TextFile.txt in the C:\Temp folder.

New-Item C:\Temp\TestFile.txt -type file

As you can see, the first argument passed to the cmdlet is the name and path of the resources
to be created. The second argument passed to the cmdlet is the type of resource to create (e.g.,
a file). You can use the New-Item cmdlet to create a new folder just as easily as a new file, as
demonstrated here:

New-Item C:\Temp\MyNewFolder -type directory

In this example, a new folder named MyNewFolder is created inside the C:\Temp folder. Also
note that the second argument passed to the cmdlet specified the keyword directory and not
folder. Both terms are, of course, synonymous but PowerShell requires you to specify
directory when creating new folders.

If the file or folder you are attempting to create already exists, you will get an error message.

New-Item : The file 'C:\Temp\TestFile.txt' already exists.
At C:\MyScripts\xxx.psl:3 char:9
+ New-item <K<K C:\Temp\TestFile.txt -type file

If you want, you can add the -force parameter to replace the file or folder with an empty file
or folder, as demonstrated here:

New-Item C:\Temp\TestFile.txt -type file -force

Writing to Text Files

Windows PowerShell provides a number of additional ways to create files and write output
to them. For example, you have already seen how to create and write to new text files by
redirecting object pipeline data with the > operator. Windows PowerShell also lets you write
to text files using the Set-Content, Out-File, and Add-Content cmdlets.

Writing Text
Using the Set-Content cmdlet, you can write a string to a text file, as demonstrated here:

Set-Content C:\Temp\Temp.txt "Once upon a time..."

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Here, the first argument passed to Set-Content is the name and path of the file to be created.
The second argument is the string to be written to the text file. If a file of the same name
already exists, the Set-Content cmdlet will automatically replace its content with the specified
string.

You can also use the Out-File cmdlet to send data from the object pipeline directly to a file
without seeing anything displayed in the Windows command console. For example, the fol-
lowing statement will redirect the output of the Get-ChildItem cmdlet to a file named
Temp.txt in C:\Temp.

Get-Childitem | Out-File C:\Temp\Temp.txt

Like the Set-Content cmdlet, the Out-File cmdlet overwrites the contents of any like-named
files.

Appending Text

If you want to add to an existing file when writing to it, as opposed to replacing its contents,
you can use the Add-Content cmdlet to append data to the end of a file, as demonstrated by
the following example.

Set-Content C:\Temp\Temp.txt "Once upon a time..."

Add-Content C:\Temp\Temp.txt "And they lived happily ever after."”
Add-Content C:\Temp\Temp.txt ""

Add-Content C:\Temp\Temp.txt "“tThe end"

Here, a new file is created and written to using the Set-Content cmdlet. Next, the Add-Content
cmdlet is used to write additional text to the file.

Reformatting Cmdlet Output

As you have just learned, Windows PowerShell provides many different ways of creating and
writing data to text files. You have also seen examples of how to write pipeline object data
directly into text files. In these examples, data was written using whatever format the last
cmdlet applied to it. However, Windows PowerShell makes it easy to customize cmdlet output
using the Format-List and Format-Table cmdlets.

The Format-List Cmdlet

The Format-List cmdlet processes object pipeline data and reformats it into a vertical list.
Using the cmdlet’s -property parameter, you can control which object properties are dis-
played in order to create custom reports and output.

For example, suppose you wanted to develop a PowerShell script that generated a report that
showed a listing of all the files stored in the current working directory. To begin, you might
start by adding the following statements to the script.

Chapter 8 « Working with Files and Folders

Get-ChildItem > C:\Temp\Temp.txt

When executed, this script would create a text file named Tempt.txt in the root folder on the
computer’s C: drive.

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

d---- 2/24/2008 9:29 PM DarkBASIC
d---- 10/14/2008 7:37 PM MyScripts
d---- 9/9/2008 7:20 PM Perflogs
d-r-- 10/14/2008 9:21 PM Program Files
d---- 7/7/2007 4:24 PM ruby

d---- 10/15/2008 6:54 PM Temp

d---- 10/14/2008 7:38 PM TestFolder
d-r-- 4/26/2008 10:58 PM Users

d---- 10/7/2008 7:21 PM Windows
-a--- 3/3/2007 7:52 AM 74 autoexec.bat
-ar-s 3/3/2007 7:26 AM 8192 BOOTSECT.BAK
-a--- 9/18/2006 5:43 PM 10 config.sys

By passing the output of the Get-ChildItem cmdlet to the Select-String cmdlet, you can filter
out all the files in the current working directory whose filenames do not include the string
psl. You might then pass the resulting output to the Format-List cmdlet, as shown here:

Get-ChildItem | Select-String PS1 | Format-List > C:\Temp\Temp.txt

When executed, this statement saves output similar to that shown here in a file named
Temp.txt.

IgnoreCase : True
LineNumber : 3

Line : # Script Name: FortuneTeller.psl (PowerShell Fortune Teller)
Filename : FortuneTeller.psl

Path : C:\MyScripts\FortuneTeller.psl

Pattern : PS1

Context :

Matches ¢ {psl}

IgnoreCase : True

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

LineNumber :

4

Line : # Script Name: Hangman.psl (The PowerShell Hangman Game)
Filename : Hangman.psl

Path : C:\MyScripts\Hangman.psl

Pattern . PS1

Context :

Matches : {psl}

IgnoreCase : True

LineNumber : 3

Line : # Script Name: SeinfeldTrivia.psl (The Seinfield Trivia Quiz)
Filename : SeinfeldTrivia.psl

Path : C:\MyScripts\SeinfeldTrivia.psl

Pattern . PS1

Context :

Matches ¢ {psl}

The output shown here was generated using a default format generated by the Format-List
cmdlet. It you prefer, you can exercise detailed control over the properties that are reported,
as demonstrated here:

Get-ChildItem | Select-String PS1 | Format-List -Property Filename, Path >
C:\Temp\Temp.txt

Here, the -property parameter has been specified and two arguments included. When exe-
cuted, this statement generates results similar to that shown here:

Filename : FortuneTeller.psl

Path : C:\MyScripts\FortuneTeller.psl
Filename : Hangman.psl

Path : C:\MyScripts\Hangman.psl
Filename : SeinfeldTrivia.psl

Path : C:\MyScripts\SeinfeldTrivia.psl

The Format-Table Cmdlet

The Format-Table cmdlet is very similar to the Format-List cmdlet, except that it formats
output in a horizontal table as opposed to a vertical list. For example, you might use the
Format-Table cmdlet as shown next to formulate a statement that displays a tabular view of

Chapter 8 « Working with Files and Folders

the contents of the current working directory, which is then saved as a report named
Temp.txt.

Get-ChildItem | Select-String PS1 | Format-Table > C:\Temp\Temp.txt

When executed, this statement will generate results similar to this:

IgnoreCase LineNumber Line Filename Path Pattern Context Matches
True 3 4 Scri... Fortu... C:\My... PS1 {ps1}
True 4 § Scri... Hangm... C:\My... PS1 {ps1}
True 3 # Scri... Seinf... C:\My... PS1 {psl}

Like the Format-List cmdlet, the Format-Table cmdlet lets you override its default format by
specifying the data properties you want, as demonstrated here:

Get-ChildItem | Select-String PS1 | Format-Table Filename, Path >
C:\Temp\Temp.txt

When executed, this statement will generate a report file containing output similar to that
shown here:

Filename Path

FortuneTeller.psl C:\MyScripts\FortuneTeller.psl
Hangman.psl C:\MyScripts\Hangman.psl
SeinfeldTrivia.psl C:\MyScripts\SeinfeldTrivia.psl

As another example of how to work with the Format-Table cmdlet, let’s write a statement that
lists all of the processes running on the computer that currently have more than 300 open
handles. To begin, let’s format a statement that lists all the active processes, sorts them, and
then displays only those with more than 300 open handles, as shown here:

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} > C:\Temp\Temp.txt

When executed, this statement will produce a report containing output similar to that shown
here:

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName
633 7 16384 13972 66 584 csrss
674 6 1888 4824 94 520 csrss
341 12 6276 9024 98 1804 spoolsv

552 17 13544 11748 101 1432 svchost

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

549 25 7400 10892 86 1316 svchost
1322 45 53220 59676 198 1128 svchost
375 8 3660 6396 46 944 svchost
647 0 0 8304 14 4 System

Now that we have the set of results we are looking for, let’s reformat the output using the
Format-Table cmdlet’s -groupby parameter to display a series of tables where processes are
grouped by process names, as shown here:

Get-Process | Sort-Object | Where-Object {$_.Handles -gt 300} | Format-Table
-groupby Processname > C:\Temp\Temp.txt

Make sure that when you run this example and other examples like it at the
Windows PowerShell command prompt, you do so by keying it in as a single
statement.

When executed, this statement generates a report named Temp. txt that contains results sim-
ilar to those shown here:

ProcessName: csrss

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName
608 7 16396 13960 65 584 csrss
668 6 1888 4824 94 520 csrss

ProcessName: spoolsv
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

341 12 6276 9024 98 1804 spoolsv

ProcessName: svchost

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName
552 17 13544 11748 101 1432 svchost
550 25 7400 10896 86 1316 svchost
1309 44 53224 59692 198 1128 svchost

378 8 3684 6412 46 944 svchost

Chapter 8 « Working with Files and Folders

ProcessName: System

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName

645 0 0 8304 14 4 System

Since multiple instances of some processes may be running at the same time, the -groupby
parameter groups any like-named processes with more than 300 open handles together when
formatting and displaying its output.

The Format-List and Format-Table cmdlets provide detailed control over the
display of cmdlet output. To learn more about these two cmdlets, type Get-Help
Format-List and Get-Help Format-Table at the Windows PowerShell com-
mand prompt.

Reading from Text Files

Windows PowerShell can just as easily read from a text file as it can write to it. Windows
PowerShell provides the ability to read from a text file using the Get-Content cmdlet, as
demonstrated here:

Get-Content C:\Temp\Temp.txt

As you can see, the only argument passed to the Get-Content cmdlet is the name and path of
the text file to be read. This statement will display the contents of whatever has been stored
in the specified text file. When executed, the Get-Content cmdlet automatically creates an
array into which is stored each of the lines in the specified text file, making it possible, for
example, for you to then process every line of text using a loop.

Erasing File Contents

If you want, you can programmatically erase the contents of a file without removing the file
from the computer using the Clear-Content cmdlet. To use this cmdlet, you simply specify
the name and path of the file to be erased as an argument as demonstrated here:

Clear-Content C:\Temp\Temp.txt

You can use the Clear-Content cmdlet to erase more than just the content of
text files. You can use it to clear out other types of files such as Microsoft Word
documents.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Saving Data Output as HTML

Windows PowerShell is capable of saving output in many different file formats, including
HTML. The advantage of HTML is that it can often be used to more effectively display infor-
mation, especially when used on a web server to communicate with large groups of people.
To save file output as an HTML file, you use the ConvertTo-Html cmdlet, as demonstrated
below.

Get-Service | Where-Object { $_.status -eq "running" } |ConvertTo-HTML Name,
DisplayName, Status | Set-Content C:\Temp\Text.html

Here, the Get-Service cmdlet is used to generate a list of all processes running on the com-
puter. Next, the Where-0Object cmdlet is used to filter out all non-running services. The
ConvertTo-Html cmdlet is then used to format the resulting output into an HTML file. Note
that only the Name, DisplayName, and Status properties are outputted. Finally, the resulting
HTML is written as a file named Text.html, as demonstrated in Figure 8.6.

| € HTML TABLE - Windows Internet Explorer =n R =
()Q = = CATemp\Tewt html - | +4 | x | | Gongle o -
: File Edit View Favorites Tools Help

¢ < | @ HTMLTABLE [.

Name DisplayName Status I
aawservice Lavasoft Ad-Aware Service Punning
AcLookupSve Application Txpericnce Punning

Appinfo Application Information Running =

Apple Mobile Device Apple Mobile Device Running
AudioEndpointBuilder Windows Audio Endpoint Builder Running

Aundiosrv Windows Aundio Running —
avg@wd AVGE WalchDoyg Rumming
Basics Service Basics Service Running
BFE Base Filtering Engine Punning
BITS Background Intelligent Iranster Service Funning
Ronjonr Service Bonjonr Service Running
Browser Computer Browser FRunning
CryptSve Cryptographic Services Punning
DecomLaunch DCOM Scrver Process Launcher Bunning
Dhep DHCP Client Running
Dnscache DNS Chlient Punning
DP3 Diagnostic Policy Service Raunning
EMDMgmt ReadvBoost Running
Lventlog Windows Event Log TPuoning
EventSystem COM+ Event System Running
fdPHost Function Discovery Provider Host Punning

Displaying object FDResPub Function Discovery Resource Publication Running =

pipeline asan | Computer | Protected Mode: OFF H100% -
HTML file.

Chapter 8 « Working with Files and Folders @

Saving Data as an XML File

Windows PowerShell also allows you to save pipeline object data in the form of an XML file.
XML stands for Extensible Markup Language. Its purpose is to facilitate the definition, storage,
and transmission of data between applications. To generate an XML file, you use the Export-
C1ixm1 cmdlet, as demonstrated below.

Get-ChildItem | Export-Clixml C:\Temp\Text.xml

Here, the Get-ChildItem cmdlet is used to generate a list of files stored in the current working
directory and then the Export-Clixml cmdlet is used to save the resulting output in an XML
file. When executed, this statement will generate an XML file whose contents are similar to
those shown in Figure 8.7.

‘€ C\Temp\Textumi - Windows Internet Explorer = &
C)\J S [= cATemph Tt ol + |42] || Gongi- o~

File Edit View Favontes Tooks Help

W 2| @ C\Temp\Tedtaml ' oo

LI

- <0bjs Version="1.1"
xmins—"http:/ /schemas.microsoft.com/powershell /2004 /04"
- <0bj Refld="Refld 07>

- «TN Refld—"RefId-0"=
<T >Syslem.J0.DirecloryInfo</T >
<T >Syslem.I0.FileSyslemInfo</T>
<T=System.MarshalByRefObject</T>
<l »>System.Ubject</ | >

</TN=
<ToS5tnng=>DarkBASIC</To5tnng>

- <Props>
<S5 N="Name">DarkBASIC</S>
<S N="Parent” />
<B N="Exists">true
<S5 N="Root >C:\ </S5>
<S N="FullName">C:\DarkBASIC</5>
<S N="Extension" />
<DT N="CreationTime">2007-09-22723:55:23.8096691-04:00</DT>
<NT N="CreationTimellic’>2007-09-23TN2:55:22_ 80966917 =/NT >
<NT N="I astAccessTime">20M8-07-24T21:29:52_253-05:00=/NT >
<DT N="LastAccessTimeUtc'=2008-02-25T02:29:52 23537 /DT>
DT N—"LastWriteTime">2008-02-24T21:20:52.2353-05:00</DT>
<DT N="LastWritcTimcUtc"'>2008-02-25TD2:29:52.2537 </DT>

<S N="Attributes">Directory </S> FIGURE 8.7

</Propsz
-~ <MSz An example of the
<5 .
N="PSPalh">MiuruvsolL.PowerShell.Core\ FileSyslem::C:\DarkBASIC</S > . output thatis
‘ m . produced when an
Done M Computer | Protected Mode OF H100% ~ XML file is

generated.

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Reading Data from an XML File

Windows PowerShell also provides a cmdlet that lets you retrieve XML data, thus letting you
use it again as input in another PowerShell script. To open and read an XML file, you need to
use the Import-Clixml cmdlet, as demonstrated here:

$xmlFile = Import-Clixml C:\Temp\Text.xml
$xmiFile

In this example, the first statement uses the Import-C1ixml cmdlet to retrieve the Text.xml
file and store a copy of its content in $xm1File. The second statement displays the contents
stored in $xm1File, which should look like this:

Directory: Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

Mode LastWriteTime Length Name

-a--- 9/26/2006 6:14 PM 4661 FortuneTeller.psl
-a--- 10/13/2008 3:24 PM 9948 Hangman.psl

-a--- 10/3/2008 11:51 AM 7701 SeinfeldTrivia.psl

Saving Data in a Comma-Separated Value File

One additional file format that Windows PowerShell can write to and read from is CSV. CSV
stands for comma-separated values. CSV is a file format that is used to store comma-separated
data asrecords separated by newlines and is commonly used by applications such as Microsoft
Excel as a means of storing data in a format that can easily be moved between different
applications.

To save pipeline object data in a CSV file, you use the Export-Csv cmdlet, as demonstrated
here:

Get-ChildItem | Export-Csv C:\Temp\Text.csv

When executed, this statement will create a file containing output similar to that shown
here, readying it for use by other applications, or for use as input into another PowerShell
script.

fFTYPE System.I0.Filelnfo
"PSPath","PSParentPath","PSChildName","PSDrive","PSProvider","PSIsContainer","Ve
rsionInfo","BaseName", "Mode", "Name","Length","DirectoryName","Directory","IsRead
Only","Exists","FullName","Extension","CreationTime","CreationTimeUtc","LastAcce
ssTime","LastAccessTimeUtc","LastWriteTime","LastWriteTimeUtc","Attributes”

Chapter 8 » Working with Files and Folders @

"Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\FortuneTeller.psl","Microsof
t.PowerShell.Core\FileSystem::C:\MyScripts","FortuneTeller.psl","C","Microsoft.P
owerShell.Core\FileSystem","False","File:

C:\MyScripts\FortuneTeller.psl

InternalName:

OriginalFilename:

FileVersion:

FileDescription:

Product:

ProductVersion:

Debug: False
Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False
Language:
","FortuneTeller","-a---

","FortuneTeller.psl","4661","C:\MyScripts","C:\MyScripts","False","True","C:\My
Scripts\FortuneTeller.psl",".ps1","10/3/2008 11:46:32 AM","10/3/2008 3:46:32
PM","10/3/2008 11:46:32 AM","10/3/2008 3:46:32 PM","9/26/2006 6:14:10
PM","9/26/2006 10:14:10 PM","Archive"
"Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\Hangman.psl","Microsoft.Powe
rShell.Core\FileSystem::C:\MyScripts", "Hangman.psl","C","Microsoft.PowerShell.Co
re\FileSystem","False","File: C:\MyScripts\Hangman.psl

InternalName:

OriginalFilename:

FileVersion:

FileDescription:

Product:
ProductVersion:

Debug: False
Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False
Language:
","Hangman","-a---

","Hangman.psl","9948","C:\MyScripts","C:\MyScripts","False","True","C:\MyScript

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

s\Hangman.psl",".ps1","10/14/2008 4:49:06 PM","10/14/2008 8:49:06
PM","10/14/2008 4:49:06 PM","10/14/2008 8:49:06 PM","10/13/2008 3:24:48
PM","10/13/2008 7:24:48 PM","Archive"
"Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\SeinfeldTrivia.psl","Microso
ft.PowerShell.Core\FileSystem::C:\MyScripts","SeinfeldTrivia.psl","C","Microsoft
.PowerShell.Core\FileSystem","False","File:

C:\MyScripts\SeinfeldTrivia.psl

InternalName:

OriginalFilename:

FileVersion:

FileDescription:

Product:

ProductVersion:

Debug: False
Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False
Language:
","SeinfeldTrivia","-a---

","SeinfeldTrivia.psl","7701","C:\MyScripts","C:\MyScripts","False","True","C:\M
yScripts\SeinfeldTrivia.psl",".ps1","10/3/2008 11:47:27 AM","10/3/2008 3:47:27
PM","10/3/2008 11:47:27 AM","10/3/2008 3:47:27 PM","10/3/2008 11:51:29
AM","10/3/2008 3:51:29 PM","Archive"

Reading Data from a Comma-Separated Value File

To read a CSV file into a PowerShell script, you need to use the Import-Csv cmdlet. As demon-
strated next, this cmdlet takes one argument, the name and path of the CSV file to be
imported.

$cvsFile = Import-Csv C:\Temp\Text.csv
$cvsFile

Here, the content of the previously saved CSV files has been imported back into a variable
named $csvFile and then displayed, producing output similar to that shown here:

PSPath : Microsoft.PowerShell.Core\FileSystem::C:\MyScripts\For
tuneTeller.psl
PSParentPath : Microsoft.PowerShell.Core\FileSystem::C:\MyScripts

PSChildName : FortuneTeller.psl

PSDrive
PSProvider
PSIsContainer
VersionInfo

BaseName
Mode

Name

Length
DirectoryName
Directory
IsReadOnly
Exists
FulTName
Extension
CreationTime

CreationTimeltc

LastAccessTime

Chapter 8 « Working with Files and Folders @

. C

: Microsoft.PowerShell.Core\FileSystem
: False
: File: C:\MyScripts\FortuneTeller.psl

InternalName:
OriginalFilename:
FileVersion:
FileDescription:

Product:
ProductVersion:

Debug: False
Patched: False
PreRelease: False
PrivateBuild: False
SpecialBuild: False
Language:

: FortuneTeller

to-a---

: FortuneTeller.psl

: 4661

: C:\MyScripts

: C:\MyScripts

. False

: True

: C:\MyScripts\FortuneTeller.psl
. .psl

: 10/3/2008 11:46:32 AM
: 10/3/2008 3:46:32 PM
: 10/3/2008 11:46:32 AM

SENDING OUTPUT TO THE PRINTER
In addition to creating, reading from, and writing to different types of files, Windows
PowerShell also allows you to print text output and files using the Out-Printer cmdlet. When

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

used without any arguments, the Out-Printer cmdlet submits print output to the com-
puter’s default printer, as demonstrated here:

"This is a printer test." | Out-Printer

Here, a text string has been piped to the Out-Printer cmdlet for printing. Similarly, you can
send a text file to the default printer, as demonstrated here:

Get-Content C:\Temp\TextFile.txt | Out-Printer
In fact, you can redirect any pipeline object data to the printer as shown here:
get-location | Format-List | Out-Printer

When executed, this statement will print out a document containing the following output.

Drive : C

Provider : Microsoft.PowerShell.Core\FileSystem
ProviderPath : C:\

Path : C:\

Finally, you can also direct the Qut-Printer cmdlet to submit print output to a specific printer
by passing the printer’s name as an argument.

Get-Location | Format-List | Out-Printer "hp_deskjet"

Here, information about the current working directory is printed to a printer named
hp_deskjet.

DispLAYING DATA IN A GRAPHIC WINDOW USING THE
Out-GriDVIEW CMDLET

Before we begin working on the chapter’s game project, let’s switch tracks for a moment
and learn how to work with Windows PowerShell 2.0’s new Out-GridView cmdlet. Like the
Format-List and Format-Table cmdlets, this cmdlet gives you detailed control over the pre-
sentation of output. Instead of being used to display output in the console window or in a
text file, the Qut-GridView cmdlet displays output using a table grid view in an interactive
graphical desktop window.

In order to use the Out-GridView cmdlet, you must have .Net 3.0 installed on
your computer.

Chapter 8 « Working with Files and Folders @

The Out-GridView cmdlet is designed to address the shortcomings of the Windows PowerShell
console when it comes to displaying large amounts of data and searching or sorting that data
once it has been displayed.

You can, of course, programmatically sort output before it is displayed in the
Windows PowerShell console window. In addition, although not terribly effi-
cient,youcancopyandpasteoutputfromthe consolewindowintoanapplication
like Microsoft Word in order to search it.

Displaying Output
The easiest way to use the Out-GridView cmdlet is to insert it into the end of a pipeline, as
demonstrated here:

PS C:\> Get-Process | OQut-GridView

When executed, Windows PowerShell does not display any output in the console window.
Instead, an output is displayed in a window similar to the one shown in Figure 8.8.

r ‘
LY Ger-Process | Out-GridView

The window
generated by the
Out-GridView
cmdletincludes a
scroll bar allowing
you to view all
output.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Alternatively, you can use the Out-GridView cmdlet’s -input parameter to pass object data to
the cmdlet as demonstrated here:

PS C:\> $0utput = Get-Process
PS C:\> Out-GridView -inputobject $0utPut

When executed, this example produces output that is identical to that shown in Figure 8.8.

The output displayed by the Qut-GridView cmdletis organized into columns dis-
playedin whatever orderitis passed to the cmdlet. If you wish, you can rearrange
the order in which columns are displayed by clicking on a column heading and
dragginganddroppingittoanew location.Youcanincrease ordecrease the width
of each column by dragging the separator bar that separates column headings.
In addition, if you resize a column by dragging it and want it to snap back to the
default context-sensitive width, you can double-click on the separator bar to
the right of the column that needs to be resized.

You can of course exercise a measure of control over the appearance of data displayed by the
Out-GridView cmdlet by specifying what data you display and how you want it to be sorted
before you pass it off to the Out-GridView cmdlet as demonstrated here:

PS C:\> Get-Process | select-object -property Processname, Handles, Id | Sort-
Object -Property Handles | Out-GridView

When executed, this statement will generate output similar to that shown in Figure 8.9.

£ 4 Get-Process | select-object -property Processname, Handles, Id | 5... [= | =[5)

Search In Results P~ Filter

ProcessName llandles Id =

Idle 0 0 |

hpsysdrv 20 3.276 =/

cmsg 28 424 |

hpwuSchd2 31 2,812 £
XAudio 37 2,640
LSSmve 42 1832
achost a4 2284
jusched 43 2816
MWVEVC 52 1,052
ehmsas 53 1760
rundlil2 66 3,568

usa By L
Passing output AppleMobileDeviceSenvice 71 1116
that has already MOM 7 an
been filtered and osD 74 2952
sorted by the unsecapp 75 4,020
Out-GridView ehtray 86 3184 i
cmdlet.

Chapter 8 « Working with Files and Folders

Sorting Data

The output data displayed by the Out-Grid-View cmdlet is automatically sorted in a pre-
determined order before it is passed to the cmdlet for display. If you want, you can change
the sort order by clicking on a column header. When you do, all of the data displayed in the
Out-GridView cmdlet’s graphical window is re-sorted in ascending order based on the column
you clicked on. If you click on the column heading again, the output will be re-sorted in
descending order.

Unfortunately, you cannot perform a secondary sort using the Out-GridView cmdlet’s graph-
ical output window. Instead, to do this you must programmatically sort the data before
passing it to the Out-GridView cmdlet as demonstrated here:

Get-Process | Sort-Object Processname, Handles | Out-GridView

Grouping Data

In addition to sorting data displayed in the graphical window generated by the Out-GridView
cmdlet, you can group the data displayed in any column by right-clicking on the desired
column heading and clicking on the Show in Groups option that appears. Figure 8.10 shows
an example of how the grouping option works.

' R

L¥ Ger-Process | Out-GridView = |-

Handke NPM{K} PM{K} WS{X) VM{M) CPUR) Ki ProcessMarme

~ | swchost (12)

~ | SyncServicesBasics (1)

3184 184 T3 1524 SyncServicesBasics i FiIGURE 8.10
| System (1) 3

e . R . Data displayed
GrE, i o by the
Qut-GridView
cmdlet has been
grouped by
ProcessName.

~ | taskeng (2)

B4 9 3380

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

If you want, you can ungroup the display of data by right-clicking on the column used to
group data and clearing the Show in Groups option.

Note that when data is organized into groups, graphical up and down arrows
are displayed on the far right-hand side of the graphical window. By clicking on
these arrows, you can expand or hide the display of groups, as demonstrated in

Figure 8.1 I.
(— R
£ Ger-Process | Out-GridView o=
Search in Results P~ Fiter
Handles NPM(K) PM{K} W5X) VM{M) CPUs) Id ProcessName
v | spoolsv (1)
v svchost (12)

~) SyncServivesBasics (1)

o : - ?

[}

1524 SyncServicesBasics

w | System (1)
Thedataforallbut
v | taskeng (2) =
one group has
w | unsecapp (1) -

been hidden from
view.

Searching and Filtering Data
One very handy feature of the Out-GridView cmdlet’s graphical window is the ability to filter
output by entering a keyword in the Search in Results field as demonstrated in Figure 8.12.

~

&
£¥ Out-GridView -input $OutPut ==

"::{ v Filter

(K) WS VMM) CPUs) Id
75

LUL7

Usingakeywordto
filter the display
of output.

Chapter 8 « Working with Files and Folders

Here, output was filtered to show only data for active svchost processes. Note that by default,
any keyword matches in any column are displayed. If you want to limit the keyword search

to a specific column, type the name of the column header followed by a colon and then the
keyword, as demonstrated in Figure 8.13.

E¥ Out-GridView -input SOutPut =&

andles ProcessName NPMIK) PMIK)

293 svchost 23 16332

Specifying the
column to be
filtered when a
keyword search is
performed.

To clear out a keyword search, just clear out any text that you have typed in the Search in
Results field.

In addition to filtering data using keywords searches, you can perform more complex filtering
by clicking on the Filter button located at the top of the graphical window, just to the right
of the Search in Results field. When you do this, a filter pane is displayed at the top of the

window allowing you to set specific filter criteria to be used when performing a search (see
Figure 8.14).

p N
¥ Get-Process | Dut-GridView [=ll= =

Performing
complex filtering
by specifying
——— - - detailed filtering

criteria.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

You can specify detailed criteria by clicking on the Add Criteria button and selecting different
column headings and then typing in specific filtering data in the provided text fields. You
can remove any criteria statement that is displayed by clicking on the red X located on the
right-hand side of each statement and, when ready, you can apply your criteria specifications
by clicking on the Apply button, located on the lower-right side of the filter pane.

BAack TO THE POWERSHELL Tic-TAac-Toe GAME

Okay, it’s time to turn your attention back to the chapter's main game project, the PowerShell
Tic-Tac-Toe game. The development of this game will demonstrate how to create a script that
can interact with the player by displaying messages, retrieving command line input, and
applying programming logic to control the operation of the script.

Designing the Game

This game requires two players, Player X and Player O. Player X always starts off each game.
The game validates player moves and keeps track of whose turn it is. The game displays a text-
based graphic view of the Tic-Tac-Toe game board, which it updates after each player’s turn.
The game ends when one player lines up three board squares in a row (horizontally, vertically,
or diagonally), or when all game board squares have been selected without either player being
able to pull out a win.

The overall logical flow of the PowerShell script is fairly simple. To set it up, we will complete
its development in 17 steps, as outlined here:

. Create a new script file and add opening comment statements.
. Define and initialize script variables.

. Develop the Clear-Board function.

. Develop the Get-Permission function.

. Develop the Display-Board function.

. Develop the Validate-Move function.

. Develop the Check-Results function.

. Develop the Display-Results function.

. Ready the game for play.

. Create a loop to control overall execution of the script.
. Create a loop to control individual games.

. Collect player moves.

. Validate player moves.

. Look for a winner.

. Look for a tie.

. Switch player turns.

. Prompt players to start a new game.

O 0 3 O Ul W WIN =

YUY
N U W= O

Chapter 8 « Working with Files and Folders

Creating a New Script
The first step in the creation of the Tic-Tac-Toe game is to create a new PowerShell script file
named TicTacToe.ps1 and apply your PowerShell template to it.

khkkkkhkkhkkhkhkhhhkhhhkhhhhkhhkk

#
Script Name: TicTacToe.psl (The Tic-Tac-Toe Game)

Version: 2.0

Author: Jerry Lee Ford, Jr.

i Date: October 13, 2008

#

#f Description: This PowerShell script is a two player implementation of the
popular Tic-Tac-Toe game

#

KAKKkRkKK Rk kKA khkhhkhkhkhkhkkhkhkhkhkkkhkhhhkhkhhkkhhhkhkhhhkhkhhhkhkhhkkkhhhkkhkhhhkkhkhhhkhkhhkkhrrkkhrkkxkx

Initialization Section
Functions and Filters Section

Main Processing Section

Defining and Initializing Script Variables

Next, you need to define and initialize variables used throughout the script. This is accom-
plished by adding the following statements to the initialization section of the script file. Note
that the purpose of each variable is documented by comments that have been added to the
script statements.

fiDefine variables used in this script
$startGame = "False" #Controls when the game terminates
$playGame = "True" #Controls the play of an individual round of play

$player = "X" fiSpecifies the current player's turn
$winner = "" #Specifies the winner

$moves = 0 #Counts the number of moves made
$move = "" fiStores the current player's move

$tie = "False" #Specifies when a tie occurs

ffVariables representing game board squares

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

SAL = "1"
$A2 = "1"
$A3 = "1"
$B1 = "1"
$82 = " v
$83 = " v
§CL =" "
§C2 ="
§C3 =" "

Preparing the Clear-Board Function

Now it is time to begin developing custom functions used by the script to perform specific
tasks. The functions should be placed in the functions and filters section of the script file. The
code of the first function Clear-Board, is shown below.

##This function resets variables representing variable board squares
function Clear-Board {

$script:Al =" "
$script:A2 =" "
$script:A3 =" "
$script:Bl1 =" "
$script:B2 =" "
$script:B3 =" "
$script:Cl =" "
$script:C2 =" "
$script:C3 =" "

}

When executed, this function resets the variables representing game board squares to a string
value made up of a single blank space, thus clearing out the game board and readying it for
a new round of play.

Creating the Get-Permission Function
The Get-Permission function, shown next, is responsible for prompting the players for per-
mission to start a new game.

#This function gets the player's permission to start a round of play
function Get-Permission {

Chapter 8 « Working with Files and Folders

f#HLoop until a valid reply is collected
while ($startGame -eq "False") {

Clear-Host #Clear the Windows command console screen

#Display the game's opening screen

Write-Host "“n'n'n°n"

Write-Host " | |

Write-Host " Welcome to the X |

write-Host " | |

Write-Host " ------ | |

Write-Host " TIC-TAC-TOE |

Write-Host " X "
| |
| |
| |
| |
| |

Write-Host "
Write-Host " GAME! ae----
Write-Host "
Write-Host "
Write-Host "

fiCollect the player's input

$response = Read-Host "“n"n'n'n n nn Would you like to play? (Y/N)"

ffValidate the player's input

if ($response -eq "Y"){ #The player wants to play a new round
$startGame = "True"

}

elseif ($response -eq "N") { #The player wants to quit
$startGame = "False"
Clear-Host ffiClear the Windows command console screen
exit #Terminate script execution

}

Asyou can see, toliven things up a bit, this function displays a text-based graphicrepresenting
a Tic-Tac-Toe board and prompts the player to enter Y to start a new game. The function

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

validates the player’s input allowing only Y or N as valid commands. A response of N results in
the termination of the script, which occurs when the exit command is executed.

Creating the Display-Board Function

The next function to be developed is the Display-Board function, whose code statements are
shown below. This function is called in order to show the current status of gameplay and to
prompt the player whose turn it is, as specified by the $player variable, to make a move. The
player’s move is then stored in $response.

#This function displays the game board, showing each player's moves
function Display-Board {

Clear-Host {Clear the Windows command console screen

fDisplay the game board

Write-Host "“n'n TIC - TAC -TOEnnn"
Write-Host " 1 2 3'n"
Write-Host " | |"
Write-Host " A $SAL | $A2 | $A3"
write-Host " | |"
Write-Host " ----e- |------- |------ "
Write-Host " | |
Write-Host " B $B1 | $B2 | $B3"
Write-Host " | |"
Write-Host " ------ |------- |------ "
Write-Host " | |"
Write-Host " C $C1 | $C2 | sc3"
Write-Host " | |"

#Collect player move
$move = Read-Host "“n n'n n Player $player's turn”
$move #Return the Player's input to the calling statement

Creating the Validate-Move Function
The Validate-Move function, shown here, is called after each player’s turn. Its job is to ensure
that only valid moves are accepted.

Chapter 8 « Working with Files and Folders

#This function determines if the player's input is valid
function Validate-Move {

if ($move.length -eq 2) { {Valid moves consist of 2 characters
if ($move -match "[A-CI[1-31") { #Regular expression test that looks

$result = "Valid" f#for an instance of A, B, or C and an
} ffinstance of 1, 2, or 3.
else {
$result = "Invalid" #The move is invalid if it is not Al, A2, A3,
} # B1, B2, B3, Cl, C2, or C3
}
else {

$result = "Invalid" #The move is invalid if it does not consist of 2
} ficharacters

#Move is invalid if it has already been assigned to a player during a
previous turn

if (($move -eq "ALl") -and ($A1l -ne " ")) {$result = "Invalid"}
if (($move -eq "A2") -and ($A2 -ne " ")) {$result = "Invalid"}
if (($move -eq "A3") -and ($A3 -ne " ")) {$result = "Invalid"}
if (($move -eq "B1") -and ($B1 -ne " ")) {$result = "Invalid"}
if (($move -eq "B2") -and ($B2 -ne " ")) {$result = "Invalid"}
if (($move -eq "B3") -and ($B3 -ne " ")) {$result = "Invalid"}
if (($move -eq "C1") -and ($C1 -ne " ")) {$result = "Invalid"}
if (($move -eq "C2") -and ($C2 -ne " ")) {$result = "Invalid"}
if (($move -eq "C3") -and ($C3 -ne " ")) {$result = "Invalid"}

$result #Return this value to the statement that called this function

}

This function begins by setting up an if statement to ensure that the player’s move was
specified as two characters. The first character represents a coordinate on the horizontal pane
and the second character represents a coordinate on the vertical pane. An embedded i f state-
ment then executes aregular expression that determines whether the first character supplied
by the player is a A, B, or C and whether the second character is a 1, 2, or 3. If the result of
either of these two if statements evaluates as being false, the player’s move is invalid. Next,
aseries of eight i f statements is executed that checks to see if the move specified by the player

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

was already made earlier in the game. The variable representing the selected game board
square is then assigned a value of X or O as appropriate. Therefore, a variable whose value is
a blank space is still available for selection and a variable assigned to a value of X or O is not.

Creating the Check-Results Function

At the end of each player’s turn, the Check-Results function, shown below, is called. Its job is
to see if the current player’s last move has resulted in the player winning the game. This is
accomplished by checking the values of the variable representing game board squares. The
variables representing each row and column in the game board are checked to see if they have
all been assigned to the current player (e.g., if there are three Xs or Os in a row). In addition,
the function also checks for a winner diagonally.

#This function checks the game board to see if there is a winner
function Check-Results {

$winner = #ATways reset this value before checking

ffLook for a winner vertically

if (($ALl -eq $player) -and ($A2 -eq $player) -and ($A3 -eq $player)) {
$winner = $player

}

if (($B1 -eq $player) -and ($B2 -eq $player) -and ($B3 -eq $player)) {
$winner = $player

}

if (($C1 -eq $player) -and ($C2 -eq $player) -and ($C3 -eq $player)) {
$winner = $player

ffLook for a winner horizontally

if (($A1 -eq $player) -and ($B1 -eq $player) -and ($C1 -eq $player)) {
$winner = $player

1

if (($A2 -eq $player) -and ($B2 -eq $player) -and ($C2 -eq $player)) {
$winner = $player

1

if (($A3 -eq $player) -and ($B3 -eq $player) -and ($C3 -eq $player)) {
$winner = $player

Chapter 8 « Working with Files and Folders

#Look for a winner diagonally

if (($A1 -eq $player) -and ($B2 -eq $player) -and ($C3 -eq $player)) {
$winner = $player

}

if (($A1 -eq $player) -and ($B2 -eq $player) -and ($C1 -eq $player)) {
$winner = $player

$winner #Return this value to the statement that called this function

}

Creating the Display-Results Function

The last function that you will need to create is the Display-Results function. This function,
shown below, is called at the end of each game in order to display the final status of the game
and to identify who, if anyone, has won.

#This function displays the game board and the final results of a round
ffof play
function Display-Results {

Clear-Host {Clear the Windows command console screen

#Display the game board

Write-Host "“n'n TIC - TAC -TOEnnn"
Write-Host " 1 2 3'n"
Write-Host " | |
Write-Host " A $SAL | $A2 | $A3"
write-Host " | |
Write-Host " ------ |------- [------ "
Write-Host " | |
Write-Host " B $B1 | $B2 | $B3"
Write-Host " | |
Write-Host " ------ [------- |------ "
Write-Host " | |
Write-Host " C $cr | $C2 | $C3"
Write-Host " | |

if ($tie -eq "True") { {Check to see if the game resulted in a tie

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Read-Host "“n nn n The game has ended in a tie. Press Enter to continue"”
}

else { #If a tie did not occur, identify the winner

Read-Host "“n n'n'n Game over. $player has won. Press Enter to continue"
}

}

In addition to displaying the game board, this function examines the value of $tie to deter-
mine whether the game has ended in a tie. If this is not the case, the appropriate player is
identified as the winner.

Clearing the Game Board and Prompting for User Permission

Now that all variables and functions have been defined, it is time to work on putting together
the programming logic that will drive the overall execution of the script. This code goes in
the script file’s main processing section. To begin, add the following statements.

Clear-Board #Call function that resets the game board

Get-Permission #Call function that asks the players for permission to
start a new round of play

The first statement calls on the Clear-Board function to clear out any variable assignment
that may be left over from a previous game. The second statement calls on the Get-Permission
function, which prompts the players for permission to start a new game.

Creating a Loop to Control Script Execution

The rest of the logic in the main processing section is enclosed in the following loop, which
should be added to the bottom of the main processing section. This loop executes until the
value of $Terminate is set equal to True, which occurs only after the players tell the game to
close.

while ($Terminate -ne "True") { {fLoop until the player decides to quit

Creating a Loop to Control Individual Gameplay
Within the while loop that you just added to the script file, you need to create a second inner
loop. This loop, shown below, will control the execution of individual games.

Chapter 8 « Working with Files and Folders

while ($playGame -eq "True") { #This loop controls the logic required to
fiplay a round of Tic-Tac-Toe

}

As you can see, this loop has been set up to run while the value of $playGame is set equal to
True. Once this occurs, the inner loop stops executing, returning control to the outer loop,
which will then prompt the players to play another game. If the players elect to play a new
game, the inner loop will be executed again. Otherwise, the game will be closed.

Collecting Player Moves

Next, add the following statements inside the inner loop. The first statement calls on the
Display-Board function, which displays the game board and prompts the current player to
make a move. The player’s move is then returned and assigned to $move. The second statement
executes the Validate-Move function. This function ensures that the move input by the player
was valid and returns a value indicating the results of that analysis which is then stored in
$validMove.

$move = Display-Board #Call function that displays the game board and
ficollects player moves

$validMove = Validate-Move #fCall the function that validates player moves

Validating Player Moves

Now that the player’s move has been validated, it is time to take action based on the results
of that analysis. This is accomplished by adding the following statement to the end of the
inner loop.

if ($validMove -eq "Valid") { #Process valid moves
$moves++ fIncrement variable that keeps track of the number of valid moves
ffAssign the appropriate game board square to the player that selected it

if ($move -eq "Al") {$Al = $player}
if ($move -eq "A2") {$A2 = $player}

if ($move -eq "A3") {$A3 = $player}
if ($move -eq "B1") {$B1 = $player}
if ($move -eq "B2") {$B2 = $player}

if ($move -eq "B3") {$B3 = $player}

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

if ($move -eq "C1") {$Cl = $player}
if ($move -eq "C2") {$C2 = $player}
if ($move -eq "C3") {$C3 = $player}

}
else { {Process invalid moves

Clear-Host {Clear the Windows command console screen

continue #Repeat this Toop

}

As you can see, an if statement has been set up that either increments the value of $moves
and then assigns the appropriate game board square to the player or displays an error message
instructing the player to try again.

Determining if Either Player Has Won the Game

The next set of statements to be added to the inner loop are shown below. The first statement
executes the Check-Results function, which is responsible for determining if one of the players
has won the game. The Check-Results function returns the results of its analysis, which is
then assigned to $winner. The rest of the statements shown below are organized into two if
statements. The first if statement checks to see if Player X has won the game. The second
if statement does the same thing for Player 0.

$winner = Check-Results 4#Call function that determines if the game is over
ffand who, if anyone, has won

if ($winner -eq "X") { #Perform the following actions when Player X wins

Write-Host “a #Make a beep sound

Display-Results {fCall function that displays game results
$playGame = "False"

continue {fRepeat this Toop

if ($winner -eq "0") { #Perform the following actions when Player 0 wins

Chapter 8 « Working with Files and Folders

Write-Host “a #Make a beep sound

Display-Results #Call function that displays game results
$playGame = "False"

continue {ffRepeat this loop

}

In the event that one of the players has won the game, the following actions occur. First, a
beeping sound is played by passing the "a escape character to the Write-Host cmdlet to notify
the player that the game is over. The Display-Results function is then called. This function
displays the final results of the game, informing the players who won. The value of
$playGame is then set equal to False, which will terminate the execution of the inner loop
when the following continue command is executed.

Up to this point in the book, all of the Windows PowerShell game scripts that
you have developed have had one feature in common; they have been mute.
However, you can liven up your scripts a bit by adding a little touch of sound.
Specifically, by inserting the “a escape characterintoalirite-Host statementas
demonstrated below, you can play a beep sound at predefined points during the
execution of your PowerShell scripts. Note that the = character is located next
to the | key on most keyboards.

Write-Host “a {Make a beep sound

The Tic-Tac-Toe game uses this feature to help notify players when a game has
been won, lost, or tied.

Determining if a Tie Has Occurred

In the event that neither player has won the game, a check should be made to see if a tie has
occurred. This is accomplished by adding the following statements to the end of the inner
loop.

if ($moves -eq 9) { {Perform the following actions when a tie occurs

Write-Host “a {Make a beep sound

$tie = "True"

Display-Results #Call function that displays game results
$playGame = "False"

continue #Repeat this Toop

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, an if statement is used to examine the value of $moves and if it is set equal to
9 then every square on the game board has been selected and a tie is declared by setting
$tie equal to True.

Switching Between Player Turns

If a tie has not occurred and neither player has been found to have won the game, the inner
loop executes and prompts the next player to make a move. Before doing so, the following
statements need to be executed and should therefore be added to the end of the inner loop.

#The game is not over yet so switch player turn
if ($playGame -eq "True") {
if ($player -eq "X") {

$player = "0"
1
else {

$player = "X"

}
As you can see, these statements toggle the value of $player between X and 0 each time they

are executed, thus controlling whose turn it is.

Prompting Players to Play a New Game

The last set of code statements to be added to the script, shown below, should be added to
the end of the outer loop. These statements set up a while loop that prompts the players to
play a new game.

#This next set of statements only runs when the current round of play
fthas ended

$response = "False" #Set default value in order to ensure the Toop executes

ffLoop until valid input is received
while ($response -ne "True") {

Clear-Host #Clear the Windows command console screen

#Prompt the player to play a new game
$response = Read-Host "“n'n Play again? (Y/N)"

Chapter 8 « Working with Files and Folders

f#Validate the player's input #Keep playing
if ($response -eq "Y") {

ffReset default variable settings to get ready for a new round of play
$response = "True"

$terminate = "False"

$playGame = "True"

Clear-Board

$player = "X"

$moves = 0

$tie = "False"
}

elseif ($response -eq "N") { #Time to quit

Clear-Host #Clear the Windows command console screen
Write-host " “n'n Please return and play again soon."
Read-Host #Pause gameplay

$response = "True"

$terminate = "True"

}
else { fInvalid input received

Clear-Host {fClear the Windows command console screen
Write-Host ""n°n Invalid input. Please press Enter to try again.”
Read-Host #Pause gameplay

}

Only input of Y or N is accepted. A value of Y starts a new round of play by resetting the script
variables back to their initial starting values. A reply of N terminates the game and the exe-
cution of the script.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The Final Result

Okay, that’s it. Assuming you have not made any typos in keying in the script statements that
make up the Tic-Tac-Toe game, everything should work as advertised. I suggest you take a
little time to test the game and make sure it works as expected and then find a friend to play
against and show off your programming skills.

SUMMARY

In this chapter you learned the ins and outs of programmatically administering files and
folders. Thisincluded learning how to create, delete, rename, copy, and move files and folders.
You also learned how to read from and write to different types of files, including text files,
CSV files, and XML files. You also learned how to use regular expressions to perform string
pattern matching. On top of all this, you learned how to take control of cmdlet output using
the Format-List and Format-Table cmdlets and to work with Windows PowerShell 2.0’s new
Out-GridView cmdlet. Now, before you move on to Chapter 9, “Basic System Administration,”
I suggest you set aside a few additional minutes to improve the Tic-Tac-Toe game by tackling
the following list of challenges.

CHALLENGES

I. Provide players with the ability to view a Help screen that
explains the rules of the Tic-Tac-Toe game. In addition, revisit
the text messages displayed by the game withan eye to making
them more user friendly.

2. Keep track of the number of games played as well as the
number of games won, lost, and tied by each player and make
the display of this information available at the end of each
game.

3. Consider modifying the game so that when it first starts it
collects both players’ names and then uses this information to
inform each player, by name, whose turn itisand who has won
the game.

(cHAPTER)

BAsic SYSTEM
ADMINISTRATION

he purpose of this chapter is to provide you with working examples of the

kinds of system tasks that you can perform with Windows PowerShell

scripts, as well as to give you an appreciation for the types of information
that Windows PowerShell puts at your fingertips. You will learn how to program-
matically interact with the Windows registry and use it as a repository for script
configuration settings. You will learn how to automate the management and
reporting of different Windows resources, including Windows processes and ser-
vices. This chapter will also teach you how to create and instantiate new objects
using .NET classes and COM objects, which will open up a whole new world of
programming capabilities. On top of all this, you will learn how to create a new
PowerShell game, PowerShell Blackjack.

Specifically, you will learn how to:

* Create registry keys and values and retrieve data stored in registry values
* Instantiate new objects based on .NET classes and COM objects
* Retrieve information about local and remote computers using WMI

* Administer Windows services, processes, and logs

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE POWERSHELL BLACKJACK GAME

In this chapter you will learn how to create a PowerShell version of the Blackjack card game.
In this version of the game, the player will go head to head against the computer in an effort
to get a better hand without busting by going over 21. When first started, the game’s welcome
screen is displayed, as shown in Figure 9.1.

2= Windows PowerShell — o] x|

Welcome to the

POWERSHELL BLACKJACK GAME

The welcome

screen for the
PowerShell Would you like to play? C(¥/N>: _

=

Blackjack game.

The welcome screen is also responsible for prompting the player for permission to start a new
round of play. This game interfaces with the Windows registry by accessing a key and value
that you will set up as you work your way through this chapter. If the required key and value
are not found in the registry and the player responds to the welcome screen by entering an
N, the game will display an error message before terminating. If, however, the registry key
and value are in place, the game will instead display the screen shown in Figure 9.2, should
the player decide not to play the game after starting the script.

If, instead of quitting, the player elects to play a hand, a screen similar to the one shown in
Figure 9.3 is displayed, showing the player both her and the computer’s opening card.

At the bottom of the screen, the player is prompted to take another card. In order to take a
new card the player must type Y. To pass on the new card and to stick with her hand, the
player must enter an N. Any other input is ignored by the game. The player, at her discretion,
may continue to take new cards, as demonstrated in Figure 9.4, until the value of her hand
exceeds 21, in which case she busts.

If the player busts, the computer wins without ever having to take its own turn. Assuming
that the player does not bust, the computer goes next. The computer will continue to take
new cards as long as the total value of its hand is less than 17. Once its hand exceeds a value
of 17, the computer’s turn ends (e.g., with a value over 17 but less than or equal to 21, or with
a bust).

Chapter 9 ¢ Basic System Administration

POMERSHELL BLAGCKJACGCEK

Developed by Jerry Lee Ford., Jr.

Copyright 2888

wwyv.tech—publishing.com

S Cxxllsers™JerryrDesktop> _ _I

CURRENT HAND:

Player Hand: i8
Computcr Hand: 3

Do you want another card? (¥ NI: _ _I

CURRENT HAND:

Player Hand: 28
Computcr Hand: 3

Do you want another card? (Y N>z _ _I

By default, the
game ends by
displaying
information about
itself and its
developer.

Unlike traditional
Blackjack, the
PowerShell
Blackjack game
starts off by
assigning a single
card to the player
and the computer.

The player’s
objective is to get
ascloseto 2l as
possible without
going over.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Figure 9.5 shows the results of a typical round of play. In this example, the player has beaten
the computer.

2= Windows PowerShell _[of x]

RESULIS:

Player Hand: 28

Computcr Hand: 18

You Win?t

The p[ayer has Press Enter to play again or @ to quit: _ |
won this hand.

At the end of each hand, the player is prompted to either press Enter to start a new hand or
to type Q and press Enter to quit the game.

ACCESSING AND ADMINISTERING SYSTEM RESOURCES

Windows PowerShell provides system administrators, power users, and computer hobbyists
with access to a host of system, application, and network resources. The number of possibil-
ities is too great to cover them all in this book. Instead, this chapter will attempt to provide
you with a sampling of examples that demonstrate some of the many avenues of system
administration that Windows PowerShell can assist you in automating.

Listing and Stopping Processes

Windows operating systems run various processes behind the scenes that work together
to help keep your computer running smoothly. As you have already seen, you can use the
Get-Process cmdlet to get a listing of all the processes running on a computer, as demon-
strated here:

Get-Process

When executed, this statement will generate output similar to the following:

Handles NPM(K) PM(K) WS(K) VM(M) CPUC(s) Id ProcessName

95 4 24092 244 155 1664 aawservice
71 3 2084 740 38 1116 AppleMobileDe...

Chapter 9 ¢ Basic System Administration

253 5 21284 16644 56 1372 audiodg
185 8 15232 40504 105 2508 avgrsx
172 5 5012 3828 67 1.93 3192 avgtray
629 10 8116 792 88 1416 avgwdsvc
697 6 1832 1828 99 568 csrss
579 8 17484 14628 185 632 csrss

The amount of information returned by the Get-Process cmdlet can be a bit overwhelming.
To help streamline output, you can pass a specified process name to the cmdlet as an argu-
ment, as demonstrated next.

Get-Process PowerShell

When executed, this statement displays process information for just the PowerShel1 process.
Assuming that the specified process is currently running, this statement will generate output
similar to that shown here:

HandTles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

486 13 33808 35416 166 2.87 5736 powershell

You can also use a comma-separated list to display more than one process at a time, as
demonstrated next. You may also use wildcards to match any number of processes.

Get-Processexplorer, powershell

From time to time things go awry on Windows and as a result, processes get hung up, mis-
behave, or fail to respond. When these types of circumstances occur, you can use the
Stop-Process cmdlet to terminate these processes. For example, the following statement ter-
minates a process by specifying its process ID.

Stop-Process 2932

You can just as easily terminate a process by specifying its process name, as demonstrated
here:

Stop-Process -processname notepad

Administering Windows Services
Another key component of the Windows operating system is the software services that it runs
under the covers in order to provide specific services. For example, the spooler service is

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

responsible for managing print operations. Windows PowerShell lets you interact with and
administer Windows services via a number of different cmdlets, as listed here:

Get-Service. Retrieves a list of installed services.

Set-Service. Changes a service’s description, startup mode, or the display name of a
service.

Suspend-Service. Pauses the execution of a service. However, the service will continue
to service existing connections.

Resume-Service. Resumes a paused service.
Stop-Service. Stops a service.
Start-Service. Starts a service.

Restart-Service. Stops and then restarts a service.

To give you an idea of how you might use these cmdlets, take a look at the following
PowerShell script. This script is a text-based Print Wizard that is designed to help the user
self-diagnose and correct common printer problems before calling on the company’s IT Help
Desk for support. Admittedly, this script is rather simplistic, offering only a limited amount
of instruction, and it lacks input validity checking, relying instead on the user to carefully
follow instructions. Still, it provides a basis upon which a more sophisticated and robust script

might be developed.

*hkhkkhkkhkhhhkkhhkhhkhhkhkhhkhhhhkhhhkhhkhhkhhhhhkhhkhhhhhhhkhhkhkhkhhhhhhkhkhkhkhhkhkhkhkhkkkhkkkhkkkktkx
i

Script Name: PrintWizard.psl

Version: 2.0

Author: Jerry Lee Ford, Jdr.

{# Date: October 18, 2008

#

Description: This PowerShell script is designed to assist the user in
resolving common printing problems.

#

1 Khkkkkkkkhkkkhkkhkkhhkkhkkhkhkhkkkhkhhhkhhkhkkhhhhkhkhhkhkkhhhkhkhhhkkhhhhhhhhkhrhkhkkhhhkhkhkhkhkhkhhkkhrhkkhkkhkxxkx

Initialization Section

$response =

#Stores user input

Chapter 9 ¢ Basic System Administration

Functions and Filters Section

function Display-ServiceStatus {
Get-Service | Where-Object {$_.Name -eq "Spooler"}
}

function Display-Thanks {
Clear-Host
Write-Host "“nThank you for using the Print Wizard."
exit

function Contact-HelpDesk {
Clear-Host
Write-Host "“nContact the Help Desk for additional assistance."”
exit

Main Processing Section

#Step 1 - Display the status of the Spooler service

Clear-Host

Write-Host "“nPRINT WIZARD'n"

Write-Host "The current status of the printer spooler service, which is"
Write-Host "responsible for managing the printing process, is: “n"
Display-ServiceStatus

Write-Host ""n'nA status of “"Running " generally indicates that the"
Write-Host "spooler is operating correctly and the problem lies elsewhere.”

$response = Read-Host "“n'nDoes this solve your problem? (Y/N)"

if ($response -eq "Y") {
Display-Thanks

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

else { {#Step 2 - Check the paper supply
Clear-Host
Write-Host "“nDoes your printer have paper in it? If not, add new paper"
Write-Host "and see if this fixes the problem."

$response = Read-Host "“n'nDoes this solve your problem? (Y/N)"

if ($response -eq "Y") {
Display-Thanks
}
else { {#Step 3 - Restart the Spooler service
Clear-Host
Write-Host "“nSometimes stopping and starting the “"spooler " service"
Write-Host "will fix printing problems."
$response = Read-Host "“nRestart the service? (Y/N)"
if ($response -eq "Y") {
Restart-service "Spooler"”
Clear-Host
Write-Host "“nThe current status of the printer spooler service is:"’
g
Display-ServiceStatus
}
else {
Contact-HelpDesk
}
$response = Read-Host "“n nDoes this solve your problem? (Y/N)"
if ($response -eq "N") {
Contact-HelpDesk
}
else {
Display-Thanks

}

As you can see, the script begins by defining a variable in which user input is stored, as well
as three functions, which are used to display information about the status of the spooler
server and to display text messages that are displayed as the script executes. When first

Chapter 9 ¢ Basic System Administration

started, the script executes the Get-Service cmdlet to generate a list of active services and
then uses the Where-0bject cmdlet to filter out all services except for the spooler service. The
output of this command is then displayed as shown in Figure 9.6.

2= Windows PowerShell _[of x|

PRINT WIZNRD ﬂ

The current status of the printer spooler service, which is

responsible for managing the printing process. is:

Etatus Hame DisplayName

Running Spoolew Print Spoolew

A status of "Running” generally indicates that the

spooler is operating correctly and the problem lies elsewhere.

Docz thiz solve your problem? {Y-/H>:z _
The Print Wizard
displays the status

= of the spooler
service.

The user is then asked to respond with a value of Y or N, depending on whether the printing
problem is still occurring. Assuming that nothing has changed and that the user enters N, the

screen shown in Figure 9.7 is displayed.

At this point the useris given new instructions to follow; in this case it is checking the printer’s
paper supply. The script again asks the user if the printing problem has been resolved. If the
user responds by again entering N, the screen shown in Figure 9.8 is displayed. This time, the
script suggests that it may be helpful to restart the spooler service.

Does thiz solve your problem? (Y- Mi:z _

2= Windows PowerShell — o] x|
Docz wour printcr have papcr in it? If not, add ncw papcr ':!
and see if this fixes the problen. _J

The Print Wizard
provides a
suggestion that
the user check on
= the printer’s paper

supply.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

£= Windows PowerShell _[of x|

Lonctimcz stopping and starting the "szpooler" zecrvice
/ill fix printing problens. |

Restart the service? (¥rHi:

The Print Wizard
suggests

restarting the &l

spooler service.

Assuming that the user responds in the affirmative, the script executes the Restart-Service
cmdlet, passing it an argument of Spooler. The script then waits for the cmdlet to finish
executing and displays the status of the service again, as demonstrated in Figure 9.9.

2= Windows PowerShell = |0 x|
The currcnt statusz of the printer zpooler screvicc ia: j
Running Spooler Print Spooler

Does this solve your problem? (¥Ys/N>: _

The Print Wizard
redisplays the
status of the

spooler service =

after restarting it.

If the user’s problem has not been corrected at this point, the script displays a message advis-
ing the user to contact the Help Desk.

Accessing Event Logs

Windows PowerShell also allows you to work with and view event logs stored on the com-
puter using the Get-EventlLog cmdlet. The Windows operating system and its applications
write different types of messages to these event logs providing status and error information
that can be used to track down and analyze problems. By passing an argument of -1ist to the
Get-Eventlog, you can instruct the cmdlet to generate a list of all the event logs on your
computer, as demonstrated here:

Get-Eventlog -list

Chapter 9 ¢ Basic System Administration

When executed, this statement will display output similar to this:

Max(K) Retain

20,480
512
20,480
8,192
16,384
16,384

20,480
15,360

O O O O N O o o

o O

OverflowAction

OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded
OverwriteOlder

OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded
OverwriteAsNeeded

OverwriteAsNeeded
OverwriteAsNeeded

Entries
Application

6 DFS Replication

0 Hardware Events

0 Internet Explorer

0 Key Management Service
14,084 Media Center

0 Microsoft Office Diagnostics

171 Microsoft Office Sessions

5,061
2,945

System
Windows PowerShell

Once you know what event logs are stored on your computer, you can view their contents.
For example, the following statement displays a list of all the messages that have been written
to the Application event log.

Get-EventlLog Application

When executed, this statement will generate output similar to that shown below.

Index Time

17
17
17
17
17
17
17
16
16
16
16
16

Type
23:03 Information
23:03 Error
01:59 Information
01:56 Information
01:55 Information
01:55 [Information
00:03 Information
21:36 Information
21:33 Information
21:33 Information
18:27 Warning
18:05 Information

Source InstancelD Message
Windows Error Rep... 1001 Fa...
Application Error 1000 Fa...
VSS 8224 Th...
System Restore 8194 Su...
System Restore 8194 Su...
Windows Error Rep... 1001 Fa...
VSS 8224 Th...
VSS 8224 Th...
System Restore 8211 Su...
System Restore 8194 Su...
Microsoft-Windows... 1 Th.

iPod Service 0 Th.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Event logs can hold many thousands of messages. If you are looking for something that
may have recently occurred, you can limit the amount of data that is returned by the
Get-EventlLog cmdlet by passing it the -newest parameter, which specifies how many of the
most recently recorded messages you want to view, as demonstrated here:

Get-Eventlog Application -newest 4

When executed, this statement will generate output similar to this:

Index Time Type Source InstancelD Message
8492 Oct 17 23:03 Information Windows Error Rep... 1001 Fa...
8491 Oct 17 23:03 Error Application Error 1000 Fa...
8490 Oct 17 01:59 Information VSS 8224 Th...
8489 0Oct 17 01:56 Information System Restore 8194 Su...

You may have noticed that the data returned by the Get-Eventlog is truncated, making it
pretty unusable. You can fix this using the Format-List cmdlet to generate a readable report.

Get-Eventlog application -newest 1 | Format-List > C:\Temp\Sample.txt

In this example, the last message recorded in the Application event log is retrieved and stored
as areport in a text file named Sample.txt. When opened, this file will contain information
similar to that shown here:

Index 1 8492

EntryType : Information

Instanceld : 1001

Message : Fault bucket 973472676, type 1

Event Name: APPCRASH
Response: None
Cab Id: 0

Problem signature:
P1l: TicTacToe.exe
P2: 0.0.0.0

P3: 47c75478

P4: KERNEL32.d11
P5: 6.0.6001.18000
P6: 4791a76d

P7: e0434f4d

P8: 000442eb

Chapter 9 ¢ Basic System Administration

P9:
P10:

Attached files:
C:\Users\derry\AppData\Local\Temp\WERI8DE. tmp.version
Ltxt

These files may be available here:
C:\Users\derry\AppData\Local\Microsoft\Windows\WER\Re
portArchive\Reportl56bled7

Category ¢ (0)

CategoryNumber : 0

ReplacementStrings : {973472676, 1, APPCRASH, None...}
Source : Windows Error Reporting
TimeGenerated : 10/17/2008 11:03:52 PM
TimeWritten : 10/17/2008 11:03:52 PM

UserName

It may be helpful to generate a report that contains only certain types of event messages.
For example, you might only want to see messages that have a certain EventID or that are
generated by a particular source. This can be accomplished by piping the output of the
Get-EventlLog cmdlet to the Where-0bject cmdlet, as demonstrated here:

Get-Eventlog application | Where-Object {$_.Source -eq "VSS"}

When executed, this statement generates the following list of event messages, which you
might then decide to format and save as a report.

Index Time Type Source InstancelD Message
8490 Oct 17 01:59 Information VSS 8224 The ...
8486 Oct 17 00:03 Information VSS 8224 The ...
8485 Oct 16 21:36 Information VSS 8224 The ...
8445 (Oct 16 03:04 Information VSS 8224 The ...
8423 Oct 16 00:03 Information VSS 8224 The ...
8422 Oct 15 20:21 Information VSS 8224 The ...
8395 Oct 14 21:24 Information VSS 8224 The ...
8388 Oct 14 21:19 Information VSS 8224 The ...

8378 Oct 14 12:45 Information VSS 8224 The ...

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Retrieving System Information Using WMI

As you have just seen, Windows PowerShell provides access to cmdlets that collect informa-
tion about different aspects of the computer. However, there are only a limited number of
these cmdlets available. Windows PowerShell makes up for this by allowing you to use
Microsoft’s Windows Management Instrumentation (WMI) in order to tap into and access
system information from a variety of different sources, including the operating system, ser-
vices, application, and hardware.

WMI is a system management interface designed to facilitate access to system informa-
tion. Both Windows PowerShell 1.0 and 2.0 encapsulate support for WMI through the
Get-WmiObject cmdlet. In addition, Windows PowerShell 2.0 provides support for a number
of new WMI specific cmdlets, as outlined below.

e Invoke-WmiMethod. Executes WMI methods.
* Register-WMIEvent. Allows you to register with a specific WMI event.
e Remove-WMIObject. Deletes WIM instances and classes.

* Set-Wmilnstance. Creates or changes a WMI class instance.

The amount of information that can be accessed through WMI is staggering. A complete
discussion of WMI is well beyond the scope of this book. However, to give you an apprecia-
tion of WMI and the kinds of data that you can get from it, these next several sections will
provide a series of examples that show how to access BIOS, processor, network, and applica-
tion information.

Retrieving BIOS Information

Using the Get-WmiObject cmdlet, you can retrieve system BIOS information from any Windows
computer. Computer administrators might use this information in order to determine on
which computers to apply a BIOS update in the event a BIOS-related problem is discovered on
certain models of computers.

All that you have to do to retrieve BIOS information is pass Win32-BI0S as an argument to the
cmdlet.

$x = Get-WmiObject Win32_BIOS
$x

When executed, BIOS information is collected and stored in a variable named $x. In the pre-
ceding example, this data is then displayed. When executed, this example will display output
similar to that shown here:

Chapter 9 < Basic System Administration @

SMBIOSBIOSVersion : 5.03

Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : CNX71105Q6G

Version : HPQOEM - 42302e31

Retrieving System Information

You can also use the Get-WmiObject cmdlet to retrieve processor information by passing it an
argument of Win32_Processor as shown below. This information might prove useful in situa-
tions in which an administrator needs to determine if a computer’s processor meets the
minimum requirements to run a particular application. The information that is returned will
include processor name, description, manufacturer, and numerous other processor related
data.

Get-WmiObject Win32_Processor

When executed, this statement will display output similar to this:

__GENUS ;2

_ CLASS : Win32_Processor

__ SUPERCLASS : CIM_Processor

__ DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Processor.DeviceID="CPUO"

__PROPERTY_COUNT : 48

__DERIVATION : {CIM_Processor, CIM_LogicalDevice, CIM_Logic
alElement, CIM_ManagedSystemElement}

__SERVER : HP-PC

__NAMESPACE : root\cimv2

__PATH : \\HP-PC\root\cimv2:Win32_Processor.DevicelD=
"CPUO"

AddressWidth : 32

Architecture : 9

Availability ¢ 3

Caption : x64 Family 15 Model 107 Stepping 1

ConfigManagerErrorCode
ConfigManagerUserConfig

: 1

CpuStatus

CreationClassName : Win32_Processor
CurrentClockSpeed : 1000
CurrentVoltage . 13

DataWidth : 64

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Description : x64 Family 15 Model 107 Stepping 1
DevicelD : CPUO

ErrorCleared

ErrorDescription :

ExtClock : 201

Family : 133
InstallDate :

L2CacheSize : 512
L2CacheSpeed

L3CacheSize

L3CacheSpeed

LastErrorCode :

Level : 15
LoadPercentage : 2
Manufacturer : AuthenticAMD
MaxClockSpeed : 2500

Name : AMD Athlon(tm) 64 X2 Dual Core Processor 480

Due to the volume of information that this statement generates, I've shortened the list
of output a bit. Typically, to prevent information overload, you will want to use the
Format-List cmdlet to limit the display of processor data to just the information that you are
interested in.

Get-WmiObject Win32_Processor | Format-List Name, Caption, Manufacturer

When executed, this statement displays a far more manageable list of processor information.

Name : AMD Athlon(tm) 64 X2 Dual Core Processor 4800+
Caption : x64 Family 15 Model 107 Stepping 1
Manufacturer : AuthenticAMD

Retrieving Networking Data

WMI also provides access to network information. Computer administrators might use this
information to verify a computer network configuration or to troubleshoot network connec-
tivity problems. For example, to retrieve a list of all active network protocols, you would pass
Win32_NetworkProtocol as an argument to the Get-WmiObject cmdlet as shown here:

Get-WmiObject Win32_NetworkProtocol

Chapter 9 ¢ Basic System Administration @

When executed, this statement will display a list of information about all of the networking
protocols installed on your computer, as demonstrated by the following output:

Caption : Tepip
GuaranteesDelivery : True
GuaranteesSequencing : True
ConnectionlessService : False
Status : 0K

Name : MSAFD Tcpip [TCP/IP]

Retrieving Application Data

WMI also provides access to information about the applications stored on your computer. A
computer administrator might, for example, create a PowerShell script that retrieves a listing
of all the applications installed on a computer. For example, the following statements will
retrieve information about applications that have been installed using the Windows Installer

service.

Get-WmiObject Win32_Product

When executed, this statement will display data similar to this:

IdentifyingNumber : {2DFDD440-A33C-42E4-A366-71E6CB4246A0}
Name : Windows PowerShell

Vendor : Microsoft Corporation

Version : 1.0.9567.1

Caption : Windows PowerShell

IdentifyingNumber : {AC76BA86-7AD7-1033-7B44-A70800000002}
Name : Adobe Reader 7.0.8

Vendor : Adobe Systems Incorporated

Version :7.0.8

Caption : Adobe Reader 7.0.8

IdentifyingNumber : {7131646D-CD3C-40F4-97B9-CDIE4E6262EF}
Name : Microsoft .NET Framework 2.0

Vendor : Microsoft Corporation

Version ¢ 2.0.50727

Caption : Microsoft .NET Framework 2.0

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Pulling WMI Data from Remote Computers

Assuming that you have the security permissions required to do so, the Get-WmiObject cmdlet
can also be used to retrieve information from remote network computers. To do so, just
append the -computername parameter to the end of your statements, as demonstrated here:

Get-WmiObject Win32_ComputerSystem -computername HP-PC

In this example, the Get-WmiObject is executed and instructed to retrieve computer system
data from a network computer named HP.

Domain : MYDOMAIN
Manufacturer : HP-Pavilion

Model : RX887AA-ABA a6030n
Name : HP-PC
PrimaryOwnerName 2 derry

TotalPhysicalMemory : 2010918912

Consider as a practical example of this capability a scenario in which a computer adminis-
trator has been asked to install a new application on 20 computers residing on a company’s
local area network. Some of the computers might be behind locked doors or in rooms occupied
by high-level executives and thus not readily accessible during the normal course of the day.
The new application might require 500 MB of memory in order to run. Rather than physically
visiting each computer to determine the amount of memory installed on it, the computer
administrator could instead create a PowerShell script that remotely retrieves each com-
puter’s total physical memory. For example, the following statement could be used to display
a list of computers and their available physical memory.

Get-WmiObject Win32_ComputerSystem -computername HP1, HP2, HP3 | Format-List
Name, TotalPhysicalMemory

In this example, data is retrieved from the three network computers. As you can see, the
names of each remote computer are provided to the -computername parameter as a comma-
separated list. The resulting output is then piped to the Format-List cmdlet, which displays
the name of each computer and its available physical memory, as demonstrated here:

Name : HP1
TotalPhysicalmemory : 536195072

Name : HP2
TotalPhysicalmemory : 1072390144

Name : HP3
TotalPhysicalmemory : 536195072

Chapter 9 ¢ Basic System Administration @

Taking Advantage of .NET Classes

Windows PowerShell depends upon the .NET Framework for much of'its capabilities. Numer-
ous cmdlets have been designed to manipulate .NET resources or to retrieve data provided
by .NET. However, you are not limited to just the .NET resources exposed by PowerShell
cmdlets. Thanks to the New-Object cmdlet, you can create and instantiate an instance of
other .NET classes. For example, rather than using PowerShell 2.0’s Get-Random cmdlet to gen-
erate a random number, you could instead use the New-Object cmdlet to instantiate an
instance of the Random class, as demonstrated here:

$randomNo = New-Object System.Random

When executed, this statement creates an instance of a Random object. Once instantiated, you
have access to the properties and methods associated with this object. In the case of the
Random object, you have access to its Next method, which generates a random number within
a specified range.

$number = $randomNo.Next(1, 11)

Here, arandom number (integer) is generated in the range of 1 to 10 and assigned to a variable
named $number.

Taking Advantage of COM Objects

The New-0Object, just discussed in the previous section, can also be used to instantiate and
control COM objects. COM stands for Component Object Model and is a Microsoft technology that
allows Windows PowerShell to programmatically interact with and control objects, which
includes Active X controls and various Windows applications (those that support COM).

As an example, the following statements demonstrate how to create a small PowerShell script
that creates an html file containing a listing of all of the processes currently running on the
local computer and then uses COM to create an instance of Internet Explorer in order to
display the newly created HTML page.

Get-Service | Where-Object { $_.status -eq "running" } |
ConvertTo-HTML Name, DisplayName, Status | Set-Content C:\Temp\Text.html

$ie = New-Object -comobject InternetExplorer.Application
$ie.Navigate2("C:\Temp\Text.html")

$ie.Visible = $true

When executed, this example uses the New-0bject cmdlet to create an instance of Internet
Explorer. Next, Internet Explorer’s Navigate method is used to load the HTML page created at

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

the beginning of the script. Lastly, Internet Explorer’s Visible property is set equal to True,
making the browser and the specified web page visible. Figure 9.10 shows an example of the
output that you will see if you create and run this example,

L € HTML TABLE - Windows Intemet Explorer =R =" "
() Q - | @ CATemp\Text himl v |4 | || Gangle o -
: File Edit View Favorites Tools Help
T | @ HTMLTABLE [o>
Name DisplayName Status |
aawservice Lavasoft Ad-Aware Service Punning
AcLookupSve Application Experience Punning
Appinfo Application Information Running 1=
Apple Mobile Device Apple Mobile Device Punning
AudioEndpointBuilder Windows Audio Endpoint Builder Running
Aundiosrv Windows Audio Running —
avgBwd AVGE WalchDog Rumming
Basics Service Basics Service Running
BFE Base Filtering Engine Paunning
BITS Background Intellizent Iranster Service Funning
Ronjonr Service Bonjonr Service Running
Browser Computer Browser Running
CryptSve Cryptographic Services PRunning
DecomlLaunch DCOM Server Process Launcher Punning
Dhep DHCP Client Running
Dnscache DNS Client Punning
DP3 Diagnostic Policy Service Running
EMDMgmt ReadvBoost Running
Lventlog Windows [vent Log Running
EventSystem COM+ Event System Running
Using COM to fdPHost Function Discovery Provider Host Running
graphically display FDResPub Function Discovery Resource Publication Running .
scriptoutputusing Donc M Computer | Protected Mede: OFf H100% -
Internet Explorer.

PROGRAMMATICALLY INTERACTING WITH THE WINDOWS REGISTRY
Another powerful capability of Windows PowerShell is its ability to interact with the Win-
dows registry. This means that you cannot only write PowerShell scripts that can access data
stored in the Windows registry, but you can also store data in the registry.

The Windows registry is organized into five high-level keys, also referred to as hives. Registry
keys are somewhat analogous to folders on the Windows file system. Keys are used to store
other keys (or subkeys) and values. Values are analogous to files on the Windows file system.
Actual data stored in the registry is stored inside values. Of the five high-level root keys,

Chapter 9 ¢ Basic System Administration @

Windows PowerShell gives you access to the values stored in two of them, as outlined in
Table 9.1.

TaBLE 9. REGISTRY KEYS ACCESSIBLE BY THE
WIiNDOWS POWERSHELL

Hive Shortcut Description

HKEY_CURRENT_USER hkcu Stores information about the currently logged on user
HKEY_LOCAL_MACHINE hkTm Stores global computer settings

Windows PowerShell treats registry values as properties. This lets you use the
Get-ItemProperty cmdlet to view information about a key and to list all its values, as demon-
strated here:

Set-Location hkIm:\SOFTWARE\Microsoft\PowerShelT\1\PowerShellEngine
Get-ItemProperty .

The first statement shown here switches from the current provider, typically the Windows
file system, to a subkey located on the HKEY_LOCAL_MACHINE hive. The second statement uses
the Get-ItemProperty cmdlet to retrieve information about the current subkey. When exe-
cuted, these statements will generate output similar to that shown here:

Y Windows operating systems use the registry to store data about the operating
system as well as the computer’s hardware, software, and user configuration
settings. The integrity of the registry is critical to the proper operation of the
computer. Therefore, itis important that you take great care when working with
it. Otherwise, if you accidentally change or delete the wrong key or value, it can
have an unpredictable impact on the operation of your computer.

ApplicationBase : C:\Windows\system32\WindowsPowerShelT\v1.0\

ConsoleHostAssemblyName : Microsoft.PowerShell.ConsoleHost, Version=1.0.0.
0, Culture=neutral, PublicKeyToken=31bf3856ad364
e35, ProcessorArchitecture=msil

PowerShellVersion : 2.0
RuntimeVersion : v2.0.50727
CTPVersion : b
PSCompatibleVersion :1.0,2.0

Using the Get-ItemProperty cmdlet, you can also retrieve the data stored in a specific value,
as demonstrated here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$PSVer = $(get-ItemProperty
hkTm:\SOFTWARE\Microsoft\PowerShel1\1\PowerShellEngine).PowerShellVersion

$PSVer

Here, the data stored in the PowerShellVersion value is retrieved and displayed as shown
below.

2.0

Note the syntax involved in setting up this operation. Specifically, in order to facilitate an
object reference, you had to create a variable object reference by keying in a $ followed by
parentheses, inside which you identified the logical path to the key that contains the value.
With the object reference set up, you were then able to use familiar dot notation to identify
the specific object property that you wanted to retrieve. Remember, Windows PowerShell
treats registry values as object properties.

If you want, you can use the Regedit utility to visually verify the PowerShel1Version value and
its associated data by clicking on Start, typing Regedit into the Start Search field, and pressing
the Enter key. The Regedit utility lets you navigate the Windows registry in a manner similar
to the way that Windows Explorer lets you navigate the Windows file system, as demonstrated
in Figure 9.11.

To further demonstrate PowerShell’s ability to interact with the Windows registry, let’s
develop a new PowerShell script that adds a new subkey and value to the hkcu hive. The key
that will be created is named PSBlackjack and the value will be named Credits. Credits will
be used to store a string value of true. Later, when you create this chapter’s game project, the
PowerShell Blackjack game, the game will look for the data stored in the Credits value to
determine whether to display additional information about the game and its author at the
conclusion of the game.

(2 negutry Lator e ros

File Edit View Favorites Help

Using Regedit to
view registry keys
and values stored
in the hk1m hive.

ComputeAHKTY_| OCAL | P\ SOFTWARR\ Microsaft\ PowerShel\ T\ PowerShellf ngine

Chapter 9 ¢ Basic System Administration

The code for this new PowerShell script, which you should name BJSetup.ps1, is provided
here:

khkkkkkkhhhkhhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhhhkhhhhhhkhhhkhhhkhkhkhik

Script Name: BJSetup.psl (Setup script for the PowerShell Blackjack Game)
Version: 2.0

Author: Jerry Lee Ford, Jr.

{f Date: October 18, 2008

#

Description: This PowerShell script creates a registry key for the

1 PowerShell Blackjack game under the HKEY_CURRENT_USER hive
#

Kkhkkkkhkkkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhkhkhkik

Initialization Section

$key = "PSBlackjack" {Name of the registry key to be created

$value = "Credits" #iName of the registry value to be created
$type = "string" #Type of data stored in the new registry value
$data = "true" f#Data to be stored in the new registry value

Functions and Filters Section

function Create-KeyAndValue {

New-Item -name $key #Create a new registry key

New-ItemProperty $key -name $value -Type $type -value $data

Main Processing Section

Set-Location hkcu:\

Create-KeyAndValue

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, this is a relatively small and straightforward script. It begins by defining
variables representing the key and value to be created as well as the type of data being stored
(string) and its text. Next, a function named Create-KeyAndValue is defined, that when called
uses the New-Item cmdlet to create the new registry key and the New-ItemProperty cmdlet to
create and store the Credits value inside the key.

Lastly, the statements in the main processing section change the focus from the file
system to the hkcu hive and then create the new key and its value by executing the
Create-KeyAndValue function. Once executed, this script generates the key and value required
by the PowerShell Blackjack game, as shown in Figure 9.12.

\

pﬁ’ Registry Editor =R =<
File Edit View Favorites Help
4 J8 Computer Marme Type Data '
HIRV CLASSESLRODT ."_P'] [Detault) REG 5L (value not set)

4 HKEY_CURRENT_USER
| -y Applvents
‘ - Console

ab] Credits REGSZ true

Control Fanel
i |0 Environment
EUDC
. Identities
.- . Keyboard Layout
Metwaork:

-+ Ju P3Blackjack
- ji Seagate
SessionInformation

Viewing the
PowerShell
Blackjack game’s
newly created
subkey and value

. Software
»- 4 System
. ULC
| . VRGames

Volatile Environment

|
| b~y Printers
|

1IKCY_LOCAL_MACI IINC
| o || HKEY_USERS
HKEY_CURKENT_CONHG

using the Regedit
utility.

Computer\HKEY_CURREMT_USER\PSElackjack

REMOTING

Earlier in Chapter 3, “Object-Based Scripting with .NET,” you learned how to execute local
and remote background jobs using Windows PowerShell 2.0 remoting. Now it is time to learn
about another new remoting capability provided by Windows PowerShell 2.0, referred to as
remote command execution. Using remote command execution, you can execute commands
remotely on one or more computers and any output that is generated will automatically be
returned back to your local console or Windows PowerShell script for processing. To keep
things secure, all communications between the local and remote computers is encrypted.

Chapter 9 ¢ Basic System Administration @

Windows PowerShell remoting relies on the Windows Remote Management
(WinRM) service and the WS-Management protocol. Instruction on how to con-
figure remote access was provided in Chapter [. In order to work, both your
computer and the computers that you want to remotely work with must have
Windows PowerShell 2.0 installed and must be configured to support Windows
PowerShellremoting. You also need appropriate security permission to perform
whatever commands you are executing on the remote computer. This includes
permission to log into the computer, run Windows PowerShell, and to access
resources such as the registry and file system.

As is the case with background jobs, you can execute remote commands using either
a temporary runspace or a persistent runspace. To run an individual command in a tem-
porary runspace on a network computer, you need to run the command using the
Invoke-Expression cmdlet. For example, the following statement demonstrates how to use
this cmdlet to run and retrieve results using the Get-Process cmdlet on a network computer
named Svrl.

Invoke-Expression -computername Svrl -command "Get-Process utorrent”

When executed, this statement checks to see if the remote computer has any utorrent pro-
cesses running. If it does, output similar to the following will be returned.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

245 42 8556 13040 114 389.36 752 utorrent

If you want to run the Get-Process cmdlet on more than one network computer at a time you
can do so as demonstrated here:

Invoke-Expression -computername Svrl, Svrl -Command "Get-Process utorrent"”

Here the cmdlet has been remotely executed on two network computers named Svrl and
Svr2. If you need to run two or more separate commands in the same remote runspace so
that they can share data such as variables or alias definitions, you can do so by first using the
New-Runspace cmdlet as demonstrated here to set up the remote runspaces, followed by the
Invoke-Expression cmdlet statements needed to run your commands.

$r = New-Runspace -computer Svrl, Svr2
Invoke-Expression -runspace $r -command ' $ps = "utorrent" '
Invoke-Expression -runspace $r -command ' Get-Process $ps '

When working with persistent remote runspaces, it is important that you remember to
delete any runspaces that you remotely create. Otherwise, they will continue to run and

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

needlessly consume resources on remote computers. To do so, all you have to do is execute
the Remove-Runspace cmdlet and using its -runspace parameter, pass it the numeric id of the
runspace you want to terminate, as demonstrated here:

Remove-Runspace -runspace $r
When executed, this statement will delete the runspace created in the previous example.

By default, Windows PowerShell 2.0 remoting requires execution on a Windows
domain. However, it can be configured to work within a workgroup by making
registry modifications. To learn more about this option, refer to Windows
PowerShell 2.0’s release notes.

CREATING YOUR OWN SCRIPT CMDLETS

Windows PowerShell is a highly extensible development tool. In Windows PowerShell 1.0,
software developers are able to develop custom cmdlets using .NET programming languages
like Visual Basic, C++, and C#. However, Windows PowerShell 2.0 makes things even easier by
allowing you to create script cmdlets using Windows PowerShell scripts.

Script cmdlets developed using Windows PowerShell 2.0 are saved as regular script files with
a .ps1 file extension. Windows PowerShell 2.0 supports the development of two types of cus-
tom cmdlets, named and unnamed. Named cmdlets have a Verb-Noun name and look and
behave very much like typical PowerShell cmdlets and will be the focus of discussion in this
chapter.

Unnamed cmdlets are not assigned a name and execute differently from reg-
ular cmdlets. To learn more about unnamed cmdlets, execute the command
Get-Help About_ScriptCmdlets at the Windows PowerShell 2.0 command
prompt.

When creating a named cmdlet, you create a new Windows PowerShell script and assign it a
Verb-Noun name. This script will use the following structure.

Cmdlet Verb-Noun {
Param()

Begin {
}

Process {

Chapter 9 ¢ Basic System Administration @

End {

}

Here, Verb-Nounrepresents the name assigned to the cmdlet. The Paramsection is used to define
parameters used by the cmdlet. Here you specify the number of parameters supported by the
cmdlet and specify whether they are mandatory or not. You can also specify specific validation
criteria that arguments passed to the cmdlet must meet to be considered valid. When used,
the Begin and End sections are processed one time and are typically used to perform initial-
ization and termination tasks like allocating and releasing required resources. The overall
programming logic that controls the execution of the cmdlet goes in the Process section.

Creating a Custom Cmdlet

To develop a good understanding of how to create cmdlets, let’s look at a couple of examples
and see how they work. In this first example, a cmdlet named Set -Home has been created. When
executed, the cmdlet changes the current working location to the user’s home folder.

Cmdlet Set-Home {

Begin {
Clear-Host

Process {
Write-Host
Write-Host "Press Enter to switch to your home directory."
Read-Host
Set-Location $PSHome

End {
Clear-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As you can see, the Begin and End sections both execute the Clear-Host cmdlet, clearing the
console window. The code statements in the Process section do the heavy lifting. For starters,
it writes a blank line to the top of the console window followed by a second line that instructs
the user to press the Enter key in order to switch to the user’s home directory. The cmdlet’s
execution is then paused using the Read-Host cmdlet. Once the Enter key is pressed, the
Set-Location cmdlet is executed and passed $PSHome as an argument.

Loading and Executing Cmdlets

In order to be able to execute your new cmdlet, you must first load it, which is done by typing
aperiod followed by a space and another period and then the forward slash character followed
by the cmdlet name, as shown here:

./Set-Home

Once it has been loaded, you can execute your cmdlet like any other Windows PowerShell
cmdlet. In the case of the Set-Home cmdlet, which does not accept arguments, simply type
its name at the Windows PowerShell command prompt and press Enter as shown here:

Set-Home

Set-Home then prompts the user to press Enter, and once this is done, the cmdlet changes the
current working location to the user’s default PowerShell home folder.

Working with Pipeline Data

Cmdlets created using Windows PowerShell can accept and process argument data passed to
it via the pipeline. In addition, pipeline data can be generated as well. To accept and process
pipeline data, you must use the Param section to define the parameters supported by the
cmdlet. To generate pipeline output, all your cmdlet has to do is display output. For example,
the following cmdlet demonstrates how to process numeric input received via the pipeline.
Specifically, this cmdlet adds together a list of numbers, which are passed to it as comma-
separated pipeline input.

Cmdlet Add-Numbers {
Param ([Parameter(Mandatory=$true, ValueFromPipeline=$true)] $Parameterl)

Begin {

Chapter 9 ¢ Basic System Administration @

Process {

$x = $x + §$_
}
End {

Write-Host "Total = $x"

}

In this example, a cmdlet named Add-Number has been created. It defines a single parameter.
This parameter is mandatory and must originate from the pipeline. Its associated argument
data will be stored in a variable named $Parameterl. When a comma-separated series of num-
bers is passed to the cmdlet, they will be processed one at a time. Each time a number is
processed, its value is added to the value of an internal variable named $x. Once every number
has been processed and the Process section has finished executing, the End section executes,
displaying the total value of all the numbers added together, as demonstrated here:

PS C:\Temp> . ./Add-Numbers
PS C:\Temp> 1, 4, 6 | Add-Numbers
Total = 11

Scriptcmdletsareavery powerful programming tool thatyou canusetodevelop
custom cmdlets specifically designed to support the development of your Win-
dows PowerShell scripts. To learn more about how to work with Script cmdlets,
check out the following help files.

e about_ScriptCmdlets
e about_ScriptCmdletMethods
e about_ScriptAttributes

* about_ScriptParameters

EVENTING

Another new capability provided by Windows PowerShell 2.0 is the ability to respond to
events, also referred to as asynchronous notifications, which are generated by many objects.
The first step in working with Windows PowerShell eventing is to identify objects that gen-
erate events. You can do this by instantiating new objects using the New-0bject cmdlet and
then using the Get-Member cmdlet to see if it generates any events.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Windows PowerShell also supports the WMI event subscriptions through the
use of the Register-WMIEvent cmdlet.

Instantiating New Objects
The first step in setting up an event is to set up or instantiate an instance of the object you
want to work with. This is done using the New-0Object cmdlet, as demonstrated here:

$ie = new-object -comobject InternetExplorer.Application

Here, a new instance of an Internet Explorer object has been defined and assigned to a variable
named $ie. Once instantiated, you can use the Get-Member cmdlet to retrieve information
about the object, as demonstrated in the next section.

Examining Objects

The Get-Member cmdlet retrieves information about .NET objects, including the methods,
properties, and the event types that the object supports. Take a look at the following example,
which demonstrates how to use the Get-Member cmdlet to retrieve information for the object
returned by the Get-Service cmdlet.

PS C:\> Get-Service | Get-Member

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

Name AliasProperty Name = ServiceName

Disposed Event System.EventHandler Disposed(Sy...
Close Method System.Void Close()

Continue Method System.Void Continue()
CreateObjRef Method System.Runtime.Remoting.0bjRef ...
Dispose Method System.Void Dispose()

Equals Method System.Boolean Equals(Object obj)
ExecuteCommand Method System.Void ExecuteCommand(Int3...
GetHashCode Method System.Int32 GetHashCode()
GetLifetimeService Method System.0bject GetLifetimeService()
GetType Method System.Type GetType()
InitializelLifetimeService Method System.Object InitializelLifetim...

Pause Method System.Void Pause()

Chapter 9 ¢ Basic System Administration @

Refresh Method System.Void Refresh()

Start Method System.Void Start(), System.Voi...
Stop Method System.Void Stop()

ToString Method System.String ToString()
WaitForStatus Method System.Void WaitForStatus(Servi...
CanPauseAndContinue Property System.Boolean CanPauseAndConti...
CanShutdown Property System.Boolean CanShutdown {get;}
CanStop Property System.Boolean CanStop {get;}
Container Property System.ComponentModel.IContaine...
DependentServices Property System.ServiceProcess.ServiceCo...
DisplayName Property System.String DisplayName {get;...
MachineName Property System.String MachineName {get;...
ServiceHandle Property System.Runtime.InteropServices....
ServiceName Property System.String ServiceName {get;...
ServicesDependedOn Property System.ServiceProcess.ServiceCo...
ServiceType Property System.ServiceProcess.ServiceTy...
Site Property System.ComponentModel.ISite Sit...
Status Property System.ServiceProcess.ServiceCo...
PS C:\>

Asyou can see in this example, the output returned by the Get-Process cmdlet is piped to the
Get-Member cmdlet. Since the object that is returned was generated using a cmdlet, you did
not have to worry about instantiating it; Windows PowerShell took care of that for you. The
output lists all of the methods, properties, and events supported by the object. In the case of
this example, the only event that is supported is the Disposed event. As should be evident, the
Get-Member cmdlet is a great tool for learning about objects.

Subscribing to Object Events

Now that you have seen how to work with objects and have learned how to use the
Get-Member cmdlet to retrieve information about objects, you can determine whether an
object supports eventing. Using this information, you can use the Register-ObjectEvent
cmdlet to subscribe to specific types of events. To do so, you need to use the Register-
ObjectEvent cmdlet’s -Sourceldentifier to specify the event you want to use as an event
trigger. For example, the following example demonstrates how to instantiate a new Timer
object and to subscribe to its Elapsed event.

$MyTimer = New-Object Timers.Timer
Register-ObjectEvent $MyTimer Elapsed -Sourceldentifier Timer.Elapsed

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

As will be demonstrated in the next section, the Timer object’s Elapsed event can be used to
trigger the execution of a statement or cmdlet after a specified period of time has elapsed.
Once you have registered an event, you can use the Get-PsEventSubscriber cmdlet to retrieve
information about all event subscriptions established in the current working session as
demonstrated below.

PS C:\> Get-PsEventSubscriber

Subscriptionld : 1

SourceObject : System.Timers.Timer
EventName : Elapsed
Sourceldentifier : Timer.Elapsed
Action :

SupportEvent . False

PS C:\>

Note that the Get-PsEventSubscriber cmdlet displayed the SubscriptionId assigned to the
event subscription, the name of the object, and the event that has been subscribed to.

Waiting for an Event to Occur

To be really useful, you need to configure the object that you subscribed to. For example, the
following script demonstrates how to use the Timers object’s E1apsed event to execute a script
named MyScript.psl after a five-second delay.

$MyTimer = New-Object Timers.Timer

Register-ObjectEvent $MyTimer Elapsed -Sourceldentifier Timer.Elapsed °
-action {./MyScript.psl}

$MyTimer.Interval = 5000

$MyTimer.Autoreset = $false #True makes the event trigger repeatedly
$MyTimer.Enabled = $true

Wait-PsEvent Timer.Elapsed

The example begins by instantiating the Timers object and then registering an event subscrip-
tion. Note that an -action parameter has been added to the end of the Register-ObjectEvent
cmdlet. When specified, this parameter tells Windows PowerShell to execute a statement or
cmdlet when the specified event occurs. The next statement configures the event subscription
by assigning a value of 5000 to the Timer object’s Interval property. As a result, the event is

Chapter 9 ¢ Basic System Administration

set to occur every 5 seconds. Next, the AutoReset property is set to $false, which sets the event
to occur just one time. As the comment at the end of the statement explains, if you set the
AutoReset property to $true, the event will repeatedly occur every 5 seconds. The next to the
last statement enables the event and the last statement executes the Wait.PsEvent cmdlet,
instructing Windows PowerShell to wait for the specified event to occur. The end result is
that when this script is executed, the Timer object’s Elapsed event is used to trigger the exe-
cution of a script named MyScript.psl after a 5 second delay.

Go ahead and set up and run this example yourself. Once the MyScript.psl script has executed,
press Ctrl + C to return to the Windows PowerShell command prompt.

If you want to set up the repeated execution of a Windows PowerShell script,
you can use the previous example to doso. Allyou have to dois change the name
of the script to be executed in the second statement and assign a value of
$true to the Autoreset property.

Removing Events

As has already been pointed out, any time a new event is registered, Windows PowerShell
assigns a unique eventidentifier (number) to it. Using this identifier, you can remove an event
subscription once it is no longer needed, as demonstrated here:

Remove-PsEvent 1

When executed, this statement deletes the first event subscription that was set up in the
current working session. If you have more than one event subscription defined, you can exe-
cute the following statement to delete all of them.

Remove-PsEvent *

Closing the Windows PowerShell console also terminates any active event subscriptions.

BAack To POWERSHELL BLACKJACK GAME

Okay, now it is time to return your attention back to the chapter’s main game project, the
PowerShell Blackjack game. This PowerShell script will interact with the Windows registry,
accessing the PSB1ackjack key and Credits value that were created earlier in the chapter when
you created and executed the BJSetup.psl script. Based on the value assigned to Credits, the
game will display or suppress the display of a screen that provides players with information
about the game and its author. The overall logical flow of the PowerShell Blackjack game is
straightforward. Its development will be completed in 12 steps, as outlined here:

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

. Create a new script file using the Windows PowerShell template file.
. Define and initialize script variables.

. Create the Get-Permission function.

. Create the Check-Registry function.

. Create the Get-PlayerHand function.

. Create the Deal-Hand function.

. Create the Get-Card function.

. Create the Get-ComputerHand function.

. Create the Analyze-Results function.

. Create the Get-PlayerHand function.

. Create the Get-NewCard function.

. Develop code for the main processing section.

O 00 3 Ul W WIN =

[y
N = O

Creating a New Script File
To start, use your PowerShell script template to create a new script file named Blackjack.ps1
and modify its contents, as demonstrated here:

EEEEEEEEESEE TS

#
Script Name: Blackjack.psl (The Blackjack Game)

Version: 2.0

Author: Jerry Lee Ford, Jr.

ff Date: October 18, 2008

#

Description: This PowerShell script is a single player implementation of
the popular casino blackjack game

#

kkkkkkkkkkkkkkkhkkhkkhkhkhhhkhhkhkhkhhkhhhkhhhhhhkhhkhhhhhhkhhhkhkhkhkhkhkhkhkhkkkhkkkkkkkkkxkx

Initialization Section

Functions and Filters Section

Main Processing Section

Chapter 9 ¢ Basic System Administration @

Defining and Creating New Variables
Now that you have created your new script file, let’s add the following variable definitions to
the script’s initialization section.

$startGame = "False" #Variable used to determine if the game is played
$playerBusted = "False" #Variable used to track when the player busts
$playerHand = 0 #Stores the current value of the player's hand
$randomNo = New-Object System.Random #This variable stores a random object
$computerHand = 0 fiStores the current value of the computer's hand
$playAgain = "True" 4controls the execution of the Toop that controls the
ffexecution of logic in the main processing section

As you can see, these statements define a number of script variables and assign their initial
values.

Creating the Get-Permission Function

The Blackjack game consists of a number of custom functions, each of which is designed to
perform a particular task. The first of these functions is the Get-Permission function, shown
next. Add this function, as well as the functions that will follow, to the script’s function and
filters section.

#This function gets the player's permission to begin the game
function Get-Permission {

#fLoop until a valid reply is collected
while ($startGame -eq "False") {

Clear-Host {Clear the Windows command console screen

#Display the game's opening screen

Write-Host "“n'n'n"

Write-Host " Welcome to the" -foregroundColor Blue

write-Host ""

Write-Host ""

Write-Host " POWERSHELL BLACKJACK GAME"
-foregroundColor Blue

Write-Host ""

Write-Host ""

Write-Host ""

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

fCollect the player's input

$response

fValidate the player's input
if ($response -eq "Y"){ #The player wants to play
$startGame = "True"

}

elseif ($response -eq "N") { #The player wants to quit

Check-Registry

exit #Terminate script execution

}

As you can see, this function uses a while loop to control the display of the script’s welcome
screen and to collect and validate the player’s response when prompted to play the game. If
the player enters Y when prompted to play the game, the value of $startGame is set equal to
"True", terminating the execution of the loop and allowing the script to continue running.
If, on the other hand, the player enters N, the Check-Registry function is called and then the
exit command is executed, thus terminating the script’s execution.

Note the addition of the -ForegroundColor parameter totheWrite-Host cmdlet.
This parameter provides the ability to specify the font color to be used when
displaying text in the Windows command console. The Write-Host cmdlet also
acceptsa-BackgroudColor parameterthat lets youspecify the background color
when displaying text in the Windows command console.

Chapter 9 ¢ Basic System Administration @

Creating the Check-Registry Function

The Check-Registry function is responsible for determining whether to display a screen at the
end of the game. This screen provides a little information about the game and its author. It
accomplishes this task by checking the value of the hkcu\PSBlackjack\Credits value stored in
the Windows registry. If Credits is equal to "True", the additional screen is displayed. Other-
wise, it is not displayed.

#This function retrieves a registry value that specifies whether or not
fithe script should display a splash screen if the player chooses not to
#iplay a game after starting the script

function Check-Registry {

Clear-Host #Clear the Windows command console screen
$currentLocation = Get-Location fKeep track of the current directory
Set-Location hkcu:\ {fChange to the HKEY_CURRENT_USER hive

f#fRetrieve the data stored in the Credits value under the PSBlackjack
ffsubkey

$regKey = $(Get-ItemProperty hkcu:\PSBlackjack).Credits

if ($regKey -eq "True") { #If the registry value is set to true
fidisplay the closing splash screen
Write-Host " “n°n°n"
Write-Host "POWERSHELL BLACKJACKDRNNNN"

-foregroundColor Blue

write-Host " Developed by Jerry Lee Ford, Jr.'n'n"
Write-Host " Copyright 2008 n"n n'n"
Write-Host " www.tech-pubTishing.com™n"n"n"nn'n"

1
Set-Location $currentlLocation #Restore the current working directory

}

Note that before using the Set-Location cmdlet to change the focus from the file system to
the registry, the function sets the value of $currentlLocation equal to the current working

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

directory. Next, the Get-ItemProperty cmdlet is used to retrieve the value stored in Credits,
which is then stored in $regKey. An if statement then analyzes the value of $regKey to deter-
mine whether to display the additional screen. Finally, the Set-Location cmdlet is executed
again, restoring the focus back to the file system.

Creating the Play-Game Function

The next function to be developed is the P1ay-Game function, shown below. This function’s job
is to execute other functions, as appropriate, in order to manage both the player’s and the
computer’s hand, as well as to analyze game results.

#This function controls the execution of an individual round of play
function Play-Game {

Deal-Hand #Call the function that deals the opening hands
Get-PlayerHand {fCall the function that manages the player's hand

#If the player has busted the game is over, otherwise it is the
ficomputer's turn
if ($script:playerBusted -eq "False") {

Get-ComputerHand #Call the function that manages the computer's hand

Analyze-Results #Call the function that analyzes game results and
ffdeclares a winner

Creating the Deal-Hand Function

The Deal-Hand function, shown below, is called by the Play-Game function each time a new
round of play is initiated. Its job is to see to it that an initial card is retrieved for both the
player and the computer.

#This function deals the player and computer's initial hands
function Deal-Hand {

$script:playerHand = Get-Card #Assign a card to the player's hand
$script:computerHand = Get-Card #Assign a card to the computer's hand

Chapter 9 ¢ Basic System Administration @

As you can see, this function makes two calls to the Get-Card function, storing the results
(e.g., cards) that are returned in script variables.

Creating the Get-Card Function

The code for the Get-Card function is shown next. When called, this function uses the
Get-Randomcmdlet to generate arandom numberin the range of 1 to 13. If the random number
turnsouttobeal,itis considered tobe an ace.Ifthe numberis greater than 10, it is considered
to be a face card (Jack, Queen, or King). The value of the randomly generated number is
returned to the calling statement. However, if an ace is generated (e.g., 1), a value of 11 is
returned, and if a face card is generated (e.g., 11, 12, 13), a value of 10 is returned.

#This function retrieves a random number representing a card and returns
fthe value of that card back to the calling statement
function Get-Card {

$number = 0

JfGenerate the game's random number (between 1 - 13)
$number = $randomNo.Next(1l, 14)

11} #Represents an ace
10} {#fRepresents a jack, queen, or king

if ($number -eq 1) {$number
if ($number -gt 10) {$number

$number #Return the number back to the calling statements

Creating the Get-ComputerHand Function

The Get-ComputerHand function, shown below, is responsible for playing the computer’s hand.
It does so by setting up a while loop that executes as long as the value of the computer’s hand
is less than 17.

#This function is responsible for managing the computer's hand
function Get-ComputerHand {

$tempCard = 0 {fStores the value of the computer's new card

#The computer continues to take hits as Tong as its hand's value is less
fthan seventeen

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

while ($computerHand -1t 17) {
$tempCard = Get-Card #Get a new card for the computer

ffAdd the value of the new card to the computer's hand
$script:computerHand = $script:computerHand + $tempCard

}

As you can see, each time the loop executes, the Get-Card function is called and the value
returned by this function is added to the $computerHand variable. This loop stops executing as
soon as the value of this variable becomes 17 or greater.

Creating the Analyze-Results Function
The Analyze-Results function, shown below, is called by the Game-P1ay function and is respon-
sible for determining whether the player or the computer won the game, or if they tied.

#This function analyzes and displays the results of each game
function Analyze-Results {

Clear-Host {Clear the Windows command console screen

fDisplay the player and computer's final hand
Write-Host "“n nn’n RESULTS: n°n"

Write-host " Player Hand: $playerHand ' n"
Write-Host " Computer Hand: $computerHand n'n"

#See if the player busted
if ($playerBusted -eq "True") {
Write-Host "“a You have gone bust." -ForegroundColor Blue
}
else { {#See if the computer busted
if ($computerHand -gt 21) {
Write-host "“a The computer has gone bust." -ForegroundColor Blue
}
else { #Neither the player nor the computer busted so Took for a winner
if ($playerHand -gt $computerHand) {

Chapter 9 ¢ Basic System Administration @

Write-Host "“a You Win!" -ForegroundColor Blue
}
if ($playerHand -eq $computerHand) {
Write-Host "“a Tie!" -ForegroundColor Blue
}
if ($playerHand -1t $computerHand) {
Write-host "“a You Tose." -ForegroundColor Blue

}

As you can see, if $playerBusted equals "True", the player has lost the game (e.g., the value of
the player’s hand has exceeded 21). If the player did not go bust, the function next looks to
see if the computer went bust. If neither the player nor the computer went bust, the value of
the player’s hand is compared to the value of the computer’s hand to determine who won
(e.g., whose hand has the higher value).

Creating the Get-PlayerHand Function
The Get-PlayerHand function, shown below, is responsible for assisting players in managing
their hands and is called by the P1ay-Game function.

#This function displays the value of both the player and computer's
ficurrent hands and prompts the player to take another card
function Get-PlayerHand {

$keepGoing = "True" #Control the execution of the loop that manages
fithe player's hand

$response = "" fiStores the players input

ffLoop until a valid reply is collected
while ($keepGoing -eq "True") {

Clear-Host {Clear the Windows command console screen

#Display the player and computer's current hands
Write-Host ""n'n"

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Host
write-Host
Write-Host
Write-Host
Write-Host

" CURRENT HAND:"

n
" Player Hand:

$playerHand"

Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host
Write-Host

" Computer Hand:

$computerHand”

fiPrompt the player to take another card
$response = Read-Host ""n"nn"n'n’n"

ffValidate the player's input

if ($response -eq "Y"){
Get-NewCard {fGet another card for the player

}

elseif ($response -eq "N") {
$keepGoing = "False"
Clear-Host #Clear the Windows command console screen

#The player wants to quit

if ($playerHand -gt 21) { {The player has gone bust
$script:playerBusted = "True"
$keepGoing = "False"

}

This function uses a while loop to display the current value of both the player’s and the com-
puter’s hand and to ask the player if she would like a new card. If the player responds in the
affirmative, the Get-NewCard function is called. The loop stops executing when either the

Chapter 9 ¢ Basic System Administration

player decides to stop asking for new cards or when her hand busts by exceeding a value
greater than 21.

Creating the Get-NewCard Function

The Get-NewCard function, shown below, is called whenever the player elects to add another
card to her hand. It accomplishes this by calling the Get-Card function and then adding the
value returned by that function to the $playerHand variable.

#This function is called whenever the player elects to get a new card
ffand is responsible for updating the value of the player's hand
function Get-NewCard {

$tempCard = 0 {fStores the value of the player's new card

$tempCard = Get-Card #Get a new card for the player
#fAdd the value of the new card to the player's hand
$script:playerHand = $script:playerHand + $tempCard

Adding Controlling Logic to the Main Processing Section

At this point, all of the script functions have been defined. All that remains is to add a little
controlling logic to the script’s main processing section. The statements that provide this
logic are outlined here:

Get-Permission #Call function that asks the players for permission to
fstart the game

#Continue playing new games until the player decides to quit the game
while ($playAgain -eq "True") {

Play-Game #Call function that controls the play of individual games

#Prompt the player to play a new game

$response = Read-Host "“n"n'nn"n'n’n’n n'n Press Enter to play""
"again or Q to quit"

if ($response -eq "Q") { #The player wants to quit

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$playAgain = "False"
Clear-Host #Clear the Windows command console screen
1
else { #The player did not enter Q so let's keep playing
$playAgain = "True"
$playerBusted = "False"

}

The first statement calls on the Get-Permission function, which prompts the player for per-
mission to start a new game. The rest of the statements in the main processing section are
embedded within a while loop that is responsible for prompting the player to play another
game.

That’s everything. Assuming that you did not make any typing mistakes when you keyed in
the code statements that make up the PowerShell Blackjack game, everything should work
as expected. Go ahead and give the game a run through. Once you have verified that every-
thing works like it is supposed to, try feeding the game invalid input to ensure that the game
handles it correctly. Once you are confident that all is well, share a copy with a friend and
ask for their feedback.

SUMMARY

In this chapter, you were introduced to a number of different ways that you can use Windows
PowerShell to access and automate Windows resources. In addition, you learned how to use
WMI to collect system information and to programmatically interact with the Windows reg-
istry. You also learned how to work with Windows processes, services, and event logs as well
as how to instantiate new objects using .NET classes and the common object model. You even
learned how to alter the presentation of text color in order to enhance the output generated
by cmdlets and script commands.

Now, before you move on to Chapter 10, “Debugging PowerShell Script,” consider setting
aside alittle extra time to enhance the PowerShell Blackjack game by addressing the following
list of challenges.

Chapter 9 ¢ Basic System Administration

CHALLENGES

. Using the Tic-Tac-Toe game for inspiration, consider creating
text-based graphic representations of each card assigned to
the player and the computer, thus allowing the player to view
her hand as if she was handling real cards.

. Consider experimenting with Write-Host cmdlet’s
-ForegroundColor and -BackgroundColor parameters to make
the game more visually appealing.

. In this implementation of Blackjack, the player and the com-
puter both start with a single card. However, in most blackjack
games, players start out with two cards. Modify the game to
correct this deficiency. Also, in addition to reporting the total
value of the player’s hand, consider displaying the value of
each card that is assigned.

. Modify the opening welcome screen by adding a text-based
graphic that displays an ace of spades and a |0 of hearts, thus
immediately identifying the game and its purpose to players
when it first starts up.

. As currently written, the PowerShell Blackjack game is a little
short on descriptive text. Consider adding instructions where
you think it will be beneficial. Also, consider creating a help
screen that players unfamiliar with the game can view to learn
how the game is played.

. Consideraddinglogictothe game thattracks the total number
of games won, lost, or tied and display this information either
at the end of the game or upon demand.

. Currently, the game is hardcoded to treat a randomly gene-
rated value of | as an ace, automatically assigning it a value of
I . Consider giving the player the option of electing to treat
aces as having a value of either | or I I.

This page intentionally left blank

(cHAPTER)

DEBUGGING POWERSHELL
SCRIPTS

f there is one inevitability in programming, it is that errors can and will

occur. No matter how long you have been programming or how good you

may be, errors are going to happen. Windows PowerShell scripting is no
exception. Fortunately, as you will learn in this chapter, there are many tools at
your disposal that you can use to track down, identify, and fix errors. In this chap-
ter, you will learn how to create error handlers that respond to errors and take
appropriate action. In addition to showing you how to debug your PowerShell
scripts, this chapter will also teach you how to develop your final PowerShell script,
the PowerShell Game Console.

Specifically, you will learn how to:

* Read and analyze syntax, runtime, and logical errors
e Alter the logical execution of a script when errors occur
* Create error handlers that trap and respond to errors

e Trace and control the logical flow of your PowerShell scripts and track vari-
able values

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

ProJECT PREVIEW: THE POWERSHELL GAME CONSOLE

In this final chapter of the book, you will learn how to develop your final Windows PowerShell
computer game, the PowerShell Game Console. This script will provide you with a console
view of all your Windows PowerShell games, allowing you to view and access them as a list
of menu items. When started, the PowerShell Game Console will display a list of all the
PowerShell scripts that it finds in the folder that you have used to store your Windows
PowerShell games, as demonstrated in Figure 10.1.

25 Windows PowerShell — o] =|

Windows PowerShell Game Console

Blackjack.p=1
FortuneTeller.psl
GuessMyNumber.psi
Hangman.psl
EnockKnock.psl
RockPaperScissors.psl
SeinfeldTrivia.psi
Threefimigos.psl
TicTacToe.psl

L1 TN [AT T

The PowerShell
Game Console
lets you start
games by entering
their menu El
number.

Enter the menu number for a game owr J to guit:

Once started, the selected PowerShell game runs within the same window as the game con-
sole, as demonstrated in Figure 10.2.

25 Windows PowerShell o (=13

Welcome to the]

TIGC-TnGC-TOE

GAHMHE?!?

E

FIGURE 10.2

The player has
used the game
console to start
the Tic-Tac-Toe Would you like to play? (¥-/M): E|

game.

Chapter 10 « Debugging PowerShell Scripts

Each time the player finishes playing a selected PowerShell game, the game ends and the
PowerShell Game Console reappears, prompting the player to select another game to play.
When done playing games, the player closes the PowerShell Game Console by entering Q and
pressing the Enter key. In response, the screen shown in Figure 10.3 is displayed.

25 Windows PowerShell — o] =|

-
Thank you [or using the Windows TowerShell Game Console :‘I

The closing screen
| of the PowerShell
game console.

UNDERSTANDING POWERSHELL ERRORS

As you have doubtless seen many times, Windows PowerShell scripts are subject to many
different types of errors. For example, errors can occur if a script attempts to access a network
resource that is not available, or if you make a typo when keying in a script statement, or if
you make a mistake in the logic used to make your script run. Each of these three types of
errors fall into a distinct category of errors, as outlined in the following list.

» Syntactical Error. An error occurring as a result of not following the syntax require-
ments of the PowerShell scripting language.

* Runtime Error. An error that occurs when a script attempts to perform an illegal action
such as the division of a number by zero.

* Logical Error. An error that occurs when a script produces an unexpected result as the
results of faulty programming logic and not as the result of a syntax or runtime error.

Each of these types of errors is explored further in the sections that follow.

Syntax Errors
Syntax errors occur when a script is initially loaded for execution. These types of errors occur
when you make typos or if you fail to follow the syntax requirements of a command or cmdlet.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

For example, a syntax error will occur if you create a script and forget to provide the required
closing double quotation marks at the end of a Write-Host statement, as demonstrated here:

Write-Host "once upon a time there were three 1ittle pigs.

When executed, this statement will generate the following error, preventing the script from
executing.

Encountered end of Tine while processing a string token.
At C:\Users\Jerry\Desktop\a.psl:9 char:1
+ KK

Syntax errors prevent PowerShell scripts from compiling and running. As such, they are easy
to identify and fix. For example, if you examine the error message that was generated by the
previous statement, you will see that it explicitly identifies the location and the text of the
statement that caused the error, making it easy to locate and fix.

Runtime Errors

Unlike syntax errors, runtime errors are not caught and flagged when your PowerShell scripts
are first started. Instead, they occur only when the statements that generate them are exe-
cuted. Unless you carefully test out of all the functionality of your PowerShell scripts, it is
easy to let runtime errors sneak by. As a result, you run the risk that other people with whom
you share your scripts will find your errors.

Some runtime errors are difficult if not impossible to avoid. For example, a computer’s net-
work connection may go down or one of its hard drives may crash. Still, most runtime errors
can be eliminated by carefully testing every aspect of your PowerShell scripts, including
seldom-used functionality. Runtime errors can also be handled by taking care to incorporate
logic within your scripts to prevent errors from occurring. For example, if your script accepts
user input, you should add extra programming logic to validate the user’s input, rejecting
any input that is not valid. Likewise, if you are developing a PowerShell script that is supposed
to copy or move files, take the time to add the logic required to first ensure that the files to
be manipulated do, in fact, exist.

Another way to locate and track down runtime errors is to test your PowerShell scripts under
various conditions. For example, try to input invalid data to see if your script handles it cor-
rectly. If your script needs to access network resources, try disconnecting your computer’s
network connection in the middle of your script’s execution. Proper testing is the key to the
elimination of most runtime errors.

As an example of a typical runtime error, take a look at this.

Chapter 10 « Debugging PowerShell Scripts

$x = 10
$y =0
$z = $x / $y

In this example, two variables have been declared and assigned values. Next, an attempt is
made to divide one number by the other. The problem with this example is that it is illegal
to divide any number by zero. As a result, when executed, this example will generate the
following error.

Attempted to divide by zero.
At C:\Users\Jerry\Desktop\a.psl:3 char:10
+ $z = $x / KK $y

Had the values of $x and $y been provided by the user, instead of hardcoded, this problem
could have been avoided by validating the user’s input and rejecting a value of zero for the
denominator.

Logical Errors

Unlike syntax and runtime errors, logical errors do not result in the display of error messages
and are therefore often difficult to track down. Because logical errors represent a breakdown
of the programming logic used to develop some part of a PowerShell script, the best way to
deal with them is to prevent them from happening in the first place by carefully planning
out your script’s logic before you start writing it.

An example of a logical error is an endless loop, where a loop is started without providing
a way to break out of it. Another example of a logical error is when you enter in the wrong
logic when trying to perform a task. For example, suppose you wanted to write a script that
added two numbers together. In doing so, suppose you inadvertently keyed in the following
statement.

#The total number of units sold is calculated by adding $x and $y
$z = $x - $y

Obviously, the intention here was to add the values of $x and $y together. However, instead
the value of $y will be subtracted from $x. As a result, if $x was set to 10 and $y was set to 5
and then the following statement was executed in the script, unexpected results would be
displayed.

Write-Host "Total number of units sold = $z

In this example, instead of $z equaling 15, it would be set equal to 5, as shown below.

Total number of units sold =5

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

In this example, the problem did not lie in the logic that was applied to the development of
the script. Instead, the problem most likely occurred by accident, when the programmer
entered in the - operator in place of the + operator. Thus, to catch logical errors, it is also
important that you take the time to carefully analyze the results generated by your scripts to
ensure that they are working as expected. Otherwise, your PowerShell scripts will do exactly
what you tell them to do, even if it is not what you really wanted them to do. Logical errors
can also be prevented by writing PowerShell scripts in a modular fashion, using functions to
organize and store related statements. This allows you to test your scripts a module at a time
as you are building them.

TERMINATING VERSUS NON-TERMINATING ERRORS

In addition to syntax, runtime, or logical errors, Windows PowerShell errors can also be clas-
sified as terminating and non-terminating. A non-terminating error is an error that does not
prevent the script from continuing its execution. For example, the following script shows a
non-terminating error. When executed, an error message is displayed when the third state-
ment is executed. However, the script continues executing, allowing remaining statements
to execute.

$x = 10
$y =0
$z = $x / $y

Write-host "I got here anyway!"

A terminating error, as you would expect, is an error that halts the execution of the PowerShell
script. As you will see later in this chapter, Windows PowerShell provides you with the ability
to override the default termination behavior for cmdlet errors.

DISSECTING THE STRUCTURE OF ERROR MESSAGES

Anytime an error occurs, PowerShell stores information about the error in an object called
ErrorRecord. This object provides access to a number of properties, each of which stores infor-
mation about the error. These properties include:

* Exception. This property doubles as an object with its own properties. One of its prop-
erties is Message. By referencing Exception.Message, you can display a description of an
error message.

* CategoryInfo. A high-level category that classifies the type of error that has occurred.
* ErrorDetails. When available, provides additional detailed information about an error.

* TargetObject. When available, identifies the object that was active when the error was
generated.

Chapter 10 « Debugging PowerShell Scripts

PowerShell stores information about the last error to occur (e.g., the most recent
ErrorRecord object) in a special variable named $error. $error is an array. The last error is
found in $error[0]; the second to last error in $error[1]; and so on. For example, using the
properties belonging to the ErrorRecord object, you can easily display a text message con-
taining the error message or the most recent error using the following statement.

Write-Host " Error: " + $error[0].exception.message

TeLLING WINDOWS POWERSHELL How To REACT TO ERRORS

By default, Windows PowerShell will continue to run your PowerShell scripts in the event a
non-terminating error occurs. You can change this behavior by modifying the value assigned
to the special $ErrorActionPreference variable. For example, you could instruct Windows
PowerShell to stop executing a PowerShell script in the event a non-terminating error occurs
by adding the following statement at the beginning of the script.

$ErrorActionPreference = "Stop"

Windows PowerShell allows you to assign any of the values shown in Table 10.1 to the
$ErrorActionPreference special variable.

TasLe 10.1 PoOWERSHELL ERRORACTION ARGUMENTS

Value Description
Continue Generates an error but allows the script to continue executing
Stop Generates an error and terminates the script
SilentlyContinue Suppresses the display of the error and allows the script to continue executing
Inquire Generates an error and asks the user how to proceed
N _J

If you want, you can specify an optional -ErrorAction argument at the end of the cmdlet
statements in order to temporarily override the default global ErrorAction setting. For exam-
ple, by default a script containing the following statement will continue executing in the
event the cmdlet is unable to connect to the specified network computer.

Get-WmiObject Win32_ComputerSystem -computername HP1

The script continues executing because the default value of the $ErrorActionPreference vari-
able is Continue. Thus, the previous statement will result in an error message being displayed,
as demonstrated here, but the script will continue running.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Get-WmiObject : The RPC server is unavailable. (Exception from HRESULT: 0x80070
6BA)

At C:\MyScripts\xxx.psl:12 char:14

+ Get-WmiObject <K<K Win32_ComputerSystem -computername HP1

By specifying an -ErrorAction value of Stop at the end of the cmdlet statement, you can
instruct the script to instead cease execution.

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction Stop

When executed, the previous statement generates the following error message and the script
stops running.

Get-WmiObject : Command execution stopped because the preference variable
"ErrorActionPreference"” or common parameter is set to Stop: The RPC server
is unavailable. (Exception from HRESULT: 0x800706BA)

At C:\MyScripts\Test.psl:4 char:14

+ Get-WmiObject <K<K Win32_ComputerSystem -computername HP1 -ErrorAction
Stop

By specifying SilentlyContinue when executing the -ErrorAction argument, you can pre-
vent errors from being displayed, thus keeping them from view by the user, as demonstrated
here:

Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction
SilentlyContinue

If desired, you can specify Inquire as the value of -ErrorAction, as demonstrated below.
Get-WmiObject Win32_ComputerSystem -computername HP1 -ErrorAction Inquire

If an error occurs when this statement executes, the Windows PowerShell will display the
following prompt.

The RPC server is unavailable. (Exception from HRESULT: 0x800706BA)
[Y] Yes [A] Yes to A1 [H] Halt Command [S] Suspend [?] Help
(default is "Y"):

When you assign a value of Inquire to -ErrorAction, Windows PowerShell responds by dis-
playing the list of choices defined in Table 10.2.

Chapter 10 « Debugging PowerShell Scripts @

TABLE 10.2 PowERSHELL ERRORACTION INQUIRY OPTIONS

Option Value Description

Y Yes Allows the script to continue and process the error as appropriate.
A Yes to ALl Automatically assumes a value of yes for any further inquiries.

H Halt Command Stops the execution of the cmdlet.

S Suspend Pauses the current pipeline and opens a new sub-shell. Allows

you to troubleshoot before typing exit to close the sub-shell and
then returns to decide which option you want to select once
pipeline processing is resumed.

? Help Displays an explanation of the effects of each of the available
options.

CREATING ERROR HANDLERS

Whenever an error occurs, Windows PowerShell generates an exception. This exception can
be trapped by an exception or error handler, thus giving programmers the ability to add logic
to their PowerShell scripts that can respond to errors. Windows PowerShell 1.0 gives you the
ability to trap and handle errors using trap handlers. Windows PowerShell 2.0 also supports
trap handlers, but also supports an even more powerful way of handling errors using Try,
Catch, and Finally code blocks. Both of these error handling options are explained and
demonstrated in the sections that follow.

Creating Trap Handlers

A trap handler is a mechanism that catches errors raised during script execution, giving you
the opportunity to analyze and hopefully recover from errors. The syntax required to set up
a trap handler is outlined here:

Trap [£xception] {
Script statements

Return [Valuel | Continue | Break
}

Here, £fxceptionis an optional placeholder for an argument representing a specific type of
error to be trapped. When specified, the trap handler will ignore any errors that occur and
do not match the specified exception type. If omitted, the trap handler will fire for any

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

exception that occurs within its scope. You can include any number of script statements
within a trap handler. Typically, you would use $_ to access information about the exception
and determine what action, if any, is appropriate to take as well as to change the value of
ErrorPolicy when appropriate. Lastly, trap handlers can specify any of three optional termi-
nation options.

Return[Value] will exit the current scope and return the specified value. Continue tells
PowerShell to continue script execution beginning with the statement that comes immedi-
ately after the statement that generated the error. Break terminates the execution of the
current scope. If none of these options is returned, PowerShell returns the value of $_.

It is important to remember that Windows PowerShell provides for different scopes. When a
script begins executing, it creates its own scope. Within the script, any functions that are
defined generate their own sub-scopes. If you place a trap handler within a function and an
error occurs within the function, the function’s trap handler will be executed. If the function
does not have its own trap handler, the error will be passed back to the parent scope and will
be processed by a trap handler, if present, within this scope.

If you place a trap handler within a function and an error occurs, specifying an option of
Continue will tell PowerShell to continue executing the next statement within the function.
Break instructs PowerShell to terminate the current scope, allowing the parent scope to
handle the error (if the parent scope has a trap handler defined). Return [Value] instructs
PowerShell to terminate the current scope and to return whatever value you specify to the
parent scope.

If you want, you can define multiple trap handlers within each scope. In this
case, each trap handler is executed in the order that it was defined, but only the
optional Return[Value]/Continue/Break statement in the last trap handler is
executed.

To get a better understanding of how to set up trap handlers, take a look at the following
example.

trap {
Clear-Host

write-Host ""nAn unexpected error has occurred. Please record the following”
write-host "message and notify the Help Desk. n™n"

Chapter 10 « Debugging PowerShell Scripts @

#The following statement generates a runtime error

$x = 10
$y =0
$z = $x / $y

In this example, a trap has been set up to trap any error that occurs within the current scope.
When executed, the trap handler displays a user-friendly error message, instructing the user
to contact the Help Desk and report the error. The statements that follow generate a runtime
error, resulting in the execution of the trap. When executed the following error is generated.

An unexpected error has occurred. Please record the following
message and notify the Help Desk.

Attempted to divide by zero.
At C:\MyScripts\xxx.psl:13 char:10
+ $z = $x / KK $y

This trap handler will execute for any error that occurs within the current scope. If you want,
you could modify the trap handler so that it only executes when a specific type of error occurs,
as demonstrated below.

trap [DivideByZeroException] {

Clear-Host
write-Host "“nAn unexpected error has occurred. Please record the following"
write-host "message and notify the Help Desk. n™n"

Break

}

Here, the trap handler has been modified so that it will only execute in the event that a
DivideByZeroException error occurs. In addition, the Break option has been added to the end
of the trap handler in order to instruct PowerShell to terminate the current scope and allow
the parent scope’s trap handler, if present, to handle the error.

Handling Errors Using Try, Catch, and Finally
In addition to setting up trap handlers, Windows PowerShell 2.0 programmers have an even
more effective mechanism for creating error handlers using Try, Catch, and Finally blocks.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Using Try, Catch, and Finally blocks, you can embed code statements where errors are likely
to occur and then provide compensating programming logic to handle them. When using
the code blocks described above to develop event handlers, you must use the following syntax.

Try {
#Insert code statements where errors may occur here

Catchl £xception], ... (Exception] {
#Code statements to execute

Catch {
#Code statements to execute

Finally {
#Code statements run whenever a run-time error occurs
}

To begin, you must place the statement(s) where you think an exception may occur inside the
Try block. You then place the statements designed to handle the exception inside one or more
Catch blocks. By defining different Catch blocks you are able to develop different responses to
different types of exceptions and to handle each one accordingly. Each Catch block can define
one or more exceptions as triggers. Lastly, you can add an optional Finally block that will
always execute, regardless of whether an error even occurred or which Catch block executed.
When included, the Finally block is the last block to be executed, providing a place to put
statements that perform any necessary wrap-up of tasks.

If you specify an empty Catch block (e.g., a Catch block without a specified ex-
ception), it must be the last Catch block you specify, following other more
specific Catch blocks, otherwise, an error will occur.

To better understand how to set up an event handler using the Try, Catch, and Finally blocks,
take a look at the following example.

Chapter 10 « Debugging PowerShell Scripts @

$1oop = "True"
while ($1oop -eq "True") {
Clear-Host

#Prompt user to type a numerator
$n = Read-Host "'n Enter numerator"”

#Prompt user to type a denominator
$d = Read-Host "'n Enter denominator"”

try {
$z = $n / §d

catch [System.DivideByZeroException] {
Clear-Host
Write-host "a
"Division by zero is not permmitted.”
Write-Host
Read-Host "Press Enter to continue”
continue

catch {
Clear-Host
Write-Host "a
Write-Host"An error occurred that could not be resolved."”
Write-Host
Read-Host "Press Enter to continue”
continue

Clear-Host
Write-Host
Write-Host "$n divided by $d equals $z"
Write-Host

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Read-Host "Press Enter to continue"

}
$Toop = "True"

while ($loop -eq "True") {
Clear-Host

#Prompt user to type a numerator
$n = Read-Host "'n Enter numerator"

fiPrompt user to type a denominator
$d = Read-Host "“n Enter denominator"

try {
$z = $n / $d

catch [System.DivideByZeroException] {
Clear-Host
Write-host "a
"Division by zero is not permmitted.”
Write-Host
Read-Host "Press Enter to continue"
continue

catch {
Clear-Host
Write-Host "a
Write-Host"An error occurred that could not be resolved."
Write-Host
Read-Host "Press Enter to continue”
continue

Clear-Host

Chapter 10 « Debugging PowerShell Scripts @

Write-Host
Write-Host "$n divided by $d equals $z"
Write-Host

Read-Host "Press Enter to continue"

}

Here, a loop has been set up that executes repeatedly until the user presses Ctrl + C to termi-
nate script execution. Within the loop, the user is repeatedly asking to enter a numerator and
a denominator, which are then divided. The statement that is likely to cause the error is the
expression that attempts to divide the two numbers entered by the user. As you can see, this
statement has been placed inside the Try block. In addition, two Catch blocks have been
defined. The first Catch block executes when a System.DivideByZeroException exception
occurs. The second code block is triggered in the event any other type of exception occurs.

This example will run without errors as long as the user only enters numeric data
and never enters azero as the denominator. Attempting to divide any number by
zerois an illegal operation and will result in an exception.

Figure 10.4 shows an example of this script in action. Here, the user is in the process of enter-
ing input.

25 Windows PowerShell — o] =|

-
Enter numerator: J :‘I

Enter denominator: 2

The useris
&l promptedtoenter
two numbers.

Since dividing 3 by 2 is a legitimate operation, no errors occur. Instead, the output shown in
Figure 10.5 is displayed.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

25 Windows PowerShell —lo] =|

=
0 divided by 2 equals 1.5 :‘I

Press Enter to continue:

The script
performed its first
computation &l
without error.

If on the other hand, the user enters 0 as the denominator, a System.DivideByZeroException
is generated. The script’s event handler catches this error and rather than allowing the script
to terminate, it handles the situation by displaying a message informing the user that division
by zero is not permitted, as demonstrated in Figure 10.6.

25 Windows PowerShell —lo| =|

=
Division by zero is not permmitted. A

Press Enter to continue:

The closing screen
of the PowerShell ~|
game.]

Although this example is rather basic, it does provide a working example that you can use as
a template to copy and paste into other Windows PowerShell scripts and then modify to
handle other types of errors. Don’t forget, if you need to, you can add a Finally block to the
end of this example.

TRACING ScrIPT EXECUTION
Often, all that you will need to track down and fix an error is the text of the error message
that PowerShell generates. However, sometimes error messages alone do not provide enough

Chapter 10 « Debugging PowerShell Scripts

information, especially when you are trying to track down a logical error. To track down and
eliminate some problems, it often helps to know the order in which things are executing
within your PowerShell scripts as well as the value of variables as they are accessed and
changed.

Displaying Output Status Information and Tracking

Variable Values

One way of keeping an eye on the inner workings of your Windows PowerShell scripts is to
place Write-Host statements at strategic points within your scripts. For example, you might
display a statement at the beginning and end of each function that notifies you when the
function is started and when it ends. You might also want to use the Write-Host statement to
display the value of key variables so that you can keep an eye on their values as they are
modified and referenced.

Because of the speed with which PowerShell processes script statements, it is also often help-
ful to place Read-Host statements after your Write-Host statements in order to pause script
execution and give you time to examine the data that is displayed. To see an example of how
you might make use of the Write-Host and Read-Host cmdlets to track the execution flow of
a PowerShell script and keep an eye on variable values, take a look at the following example.

function Display-Message {
param($x)
Write-Host $x
Write-Host "Function Display-Host now terminating”

Write-Host "Starting Script execution”
ForEach ($i in 1..5) {
Write-Host "Calling the Display-Message function”
Write-Host "and passing a value of $i"
Read-Host
Display-Message $i
}

When executed, this script displays the following messages and then pauses.

Starting Script execution
Calling the Display-Message function
and passing a value of 1

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

At this point you know that the script is about to call on the Display-Message function and
that the value of $i is equal to 1. As soon as the Enter key is pressed, the following output is
displayed.

1

Function Display-Host now terminating
Calling the Display-Message function
and passing a value of 2

Again, you can see that the Display-Host function is about to be called and the value of $1 is
now equal to 2. As this simple example shows, you can effectively track the execution of small
scripts or parts of larger scripts using the Write-Host and Read-Host cmdlets in order to keep
an eye on variable values. This will allow you to verify that things are executing in the order
you expect and to ensure that variables are being assigned the proper values.

If you do not want to see text messages, you might instead take advantage of the Write-Host
cmdlet’s ability to make beep sounds to let you know when something of interest has
occurred. Once you have managed to track down and fix any errors, you can either remove
the extra debugging statements that you added to the script or you can comment them out,
leaving them in place should you need to debug the script again at a later date.

Using PowerShell’s Debug Mode

While adding strategically placed Write-Host and Read-Host cmdlets throughout a script can
be helpful in tracking down problems, this debugging technique is only suitable for small
scripts or for limited use within larger scripts. For larger scripts, you can use the Set-PSDebug
cmdlet to enable Windows PowerShell’s debug mode.

The Set-PSDebug cmdlet accepts a number of optional parameters, which allow you to specify
the level of detail and control you want during the debug session. One parameter is -Trace,
which tells the cmdlet how much debug information you want to see. The following choices
are available.

* -Trace 0. Turns tracing off.
* -Trace 1. Displays each script statement that is executed.
* -Trace 2. Displays information on variable values and function calls and displays each

script statement that is executed.

Another optional Set-PSDebug parameter is -Step, which, when specified, tells the cmdlet to
pause and display the following list of options before executing each line in the script.

Chapter 10 « Debugging PowerShell Scripts

* Yes. Execute the next statement.
* Yes to All. Execute all remaining statements without additional prompting.
* No. Halts the debugger and exits the script.
* No to All. Halts the debugger and allows the script to finish executing.
* Suspend. Pauses script execution.
To better learn how to work with the Set-PSDebug cmdlet to debug your PowerShell scripts,

let’s take a look at a few examples. For starters, create and save the following PowerShell script
as PSTest.psl.

function Display-Message {
param($x)
Write-Host $x

ForEach ($i in 1..5) {
Display-Message $i
}

Next, run the script to make sure that it correctly displays a sequence of numbers from 1 to
5, as shown below.

(S O N N

Next, let’s enable PowerShell debug mode by typing the following statement at the Windows
PowerShell command prompt.

Set-PSDebug -Trace 1

Here, debug mode is enabled and a trace level of 1 is established. Now, with the debug mode
established, re-run your PowerShell script. This time, you should see the following output.

DEBUG: 1+ <KL . /PSTest.psl

DEBUG: 2+ function Display-Message <<<< {
DEBUG: 7+ ForEach <<<< ($i in 1..5) {
DEBUG: 8+ <KL Display-Message $i
DEBUG: 4+ KK Write-Host $x

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

1

DEBUG: 8+ <KL Display-Message $i
DEBUG: 4+ <KL Write-Host $x

2

DEBUG: 8+ <KL Display-Message $i
DEBUG: 4+ <KL Write-Host $x

3

DEBUG: 8+ <KL Display-Message $i
DEBUG: 4+ <KL Write-Host $x

4

DEBUG: 8+ <KL Display-Message $i
DEBUG: 4+ <KL Write-Host $x

As you can see, setting the trace level to 1 results in the display of each statement that was
executed in addition to the output normally displayed by the script. Obviously, this level of
debugging is helpful in letting you keep an eye on the exact order in which the script state-
ment and functions are executing, allowing you to determine if events are occurring in an
order that you anticipated.

If setting the trace level to 1 does not give you enough information, you can always increase
tracing to level 2 by executing the following statement directly at the Windows PowerShell
command prompt.

Set-PSDebug -Trace 2

With the new debug mode setting now in place, execute the script again. This time the fol-
lowing output is displayed.

DEBUG: 1+ <LK . /PSTest.psl

DEBUG: I CALL function 'a.psl' (defined in file
"C:\Users\derry\Desktop\a.psl")

DEBUG: 2+ function Display-Message <<<< {

DEBUG: 7+ ForEach <<<< ($i in 1..5) {

DEBUG: 8+ <KL Display-Message $i

DEBUG: I CALL function 'Display-Message' (defined in file
"C:\Users\derry\Desktop\a.psl")

DEBUG: 4+ <KL Write-Host $x

1
DEBUG: 8+ <K< Display-Message $i
DEBUG: I CALL function 'Display-Message' (defined in file

'C:\Users\derry\Desktop\a.psl")

Chapter 10 « Debugging PowerShell Scripts

DEBUG: 4+ <KL Write-Host $x

2
DEBUG: 8+ <KL Display-Message $i
DEBUG: I CALL function 'Display-Message' (defined in file

"C:\Users\Jerry\Desktop\a.psl")
DEBUG: 4+ KL Write-Host $x

3
DEBUG: 8+ (KL Display-Message $i
DEBUG: I CALL function 'Display-Message' (defined in file

"C:\Users\Jerry\Desktop\a.psl')
DEBUG: 4+ <KL Write-Host $x

4
DEBUG: 8+ <K< Display-Message §$i
DEBUG: ! CALL function 'Display-Message' (defined in file

"C:\Users\Jerry\Desktop\a.psl")
DEBUG: 4+ <KL Write-Host $x
5

As you can see, you now not only see each statement as it is executed, but you are also able
to identify functions as they are called as well as variable values each time they are modified
or referenced.

If you want, you can specify the -Step parameter when setting up debug mode, as demon-
strated here:

Set-PSDebug -Step

When specified, -Step automatically sets a trace level of 1. To test this debugging option out,
enter the previous statement at the Windows PowerShell command prompt and press Enter
and then run your script again. This time, PowerShell pauses the execution of your script
before each statement is executed, as demonstrated here:

Continue with this operation?

1+ <K< ./PSTest.psl
[Y] Yes [A] Yes to AT1 [N] No [L] No to A11T [S] Suspend [?] Help
(default is "Y"):

You can now specify the appropriate response to continue debugging your PowerShell script.

Tolearn more about the Set-PSDebug cmdlet, type Get-Help Set-PSDebugatthe
PowerShell command prompt.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

DEBUGGING POWERSHELL 2.0 SCRIPTS

In addition to using the Set-PSDebug cmdlet to enable Windows PowerShell’s debug mode,
Windows PowerShell 2.0 programmers have access to an even more powerful debugging
option based on the use of breakpoints. A breakpoint is a location within a script where
execution is temporarily paused, at which time a nested debug prompt is displayed, allowing
you to execute line by line control over statement execution while also keeping an eye on
execution flow and variable values.

Breakpoint Cmdlets

Windows PowerShell allows you to set as many breakpoints as you want. These breakpoints
are associated with the current Windows PowerShell session and not with scripts. As a result,
if you close the Windows Console or Graphical Windows PowerShell, any breakpoints that
have been set are lost. Breakpoints are managed within Windows PowerShell using the fol-
lowing cmdlets.

* Set-PsBreakpoint. Adds a new breakpoint to the specified line, column, variable, com-
mand, or function.

* Get-PsBreakpoint. Gets information about breakpoints in the current console session.

* Remove-PsBreakpoint. Deletes breakpoints set in the current console session.

* Enable-PsBreakpoint. Re-enables breakpoints set in the current console session.

* Disable-PsBreakpoint. Disables breakpoints set in the current console session.

Controlling Statement Execution

Once breakpoints are set, you need to execute your Windows PowerShell script in order to
begin debugging it. Once your debug session has begun, the script execution continues nor-
mally until a breakpoint is reached, at which time execution is paused. Once this occurs, you
can use the following commands to control the execution of the script’s statements as you
are debugging it.

* Step-Into. Executes the next statement within a script and then pauses execution.

* Step-Over. Executes the next statement within a script and then pauses execution but
processes all statements located within functions as if they were a single statement.

* Step-Out. Resumes script execution, continuing until either the end of the script is
reached or until another breakpoint is reached.

Chapter 10 « Debugging PowerShell Scripts

A Quick Debugging Example

To get a good understanding of how to debug a Windows PowerShell script using breakpoints,
let’s look at an example. For starters, create a new Windows PowerShell script named
Test.psl and add the following statements to it.

Clear-Host
Write-Host "Watch me count!"”
$i =1
do {
Write-Host $1
$i++

} while ($1 -le 3)
Write-Host "That's all folks!"

Next, open a new Windows PowerShell console so that you can begin a debug session. Let’s
begin by setting a breakpoint on the first line on the script, as shown here:

Set-PsBreakpoint -script Test.psl -line 1

Windows PowerShell will return and display information about a new line breakpoint object
as demonstrated here:

Column : 0
Line 01
Action

Enabled : True
HitCount : 0

Id ¢ 3

Script : C:\Users\Jerry\Desktop\Test.psl

In addition to setting a breakpoint on a specific line, you can set a breakpoint on
avariable, as demonstrated here:

Set-PsBreakpoint -script Test.psl -variable i

Note that when setting a variable breakpoint, you must leave off the § character
that begins the variable’s name. You can also set a breakpoint on a specific com-
mand as demonstrated here:

Set-PsBreakpoint -script Test.psl -command "Clear-Host"
You can even set breakpoints for functions as demonstrated here:

Set-PsBreakpoint -script Test.psl -function FunctionName

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

With the breakpoint now in place, go ahead and start your script as shown here:
./Test.psl
Windows PowerShell responds by displaying output similar to the following.

Entering debug mode. Use h or ? for help.
Hit Line breakpoint on 'C:\MyScripts\Test.psl:1'

Test.psl:1 Clear-Host
[DBG]: PS C:\MyScripts>

As you can see, script execution started and then immediately paused at the breakpoint,
before executing the first script statement and then a nested debug prompt was displayed,
giving you the ability to execute any command you want as you debug the script. To execute
the first script statement and then pause execution again, execute the following statement.

Step-Over

In response, Windows PowerShell executes the first statement in the script file and then
pauses before executing the next statement as shown here:

Test.psl:2 Write-Host "Watch me count!"”

Execute the second statement by entering Step-Over again and pressing Enter. The following
output will be displayed.

Test.psl:3 $i =1

As you can see, the next statement to be executed will assign a value of 1 to a variable named
$1. However, since the variable has not yet been referenced, it does not exist. You can verify
this by executing the following command.

$i

Instead of displaying a value, Windows PowerShell simply displayed a new nested debug
prompt. Go ahead and execute the third statement by executing the Step-Over cmdlet one
more time. At this point, the third statement has been executed and a value has been assigned
$1. To verify that this has occurred, type $i and press Enter. You can step your way through
the execution of every statement within a script file observing the order in which things are
executing and pausing whenever necessary to execute commands and check on the values of
variables, arrays, files, and so on. Once you have discovered the source of whatever problem

Chapter 10 « Debugging PowerShell Scripts

you are debugging, you can type the following command to allow the script to finish execut-
ing normally—that is, unless it comes across another breakpoint.

Step-Out

Managing Breakpoints
If you no longer need a specific breakpoint, you can remove it using the Remove-PsBreak-
point cmdlet, as demonstrated here:

Remove-PsBreakpoint 0

Here, 0 represents the ID assigned to the first breakpoint added in the console window. Alter-
natively, you can remove all of the breakpoints that you have set by executing the cmdlet
without any arguments as demonstrated here:

Remove-PsBreakpoint

If, on the other hand, you only want to temporarily disable a breakpoint, you can do so:
Disable-PsBreakpoint 0

This way, you can re-use it later by re-enabling it, as demonstrated here:

Enable-PsBreakpoint 0

If youdo notremember the ID assigned to the breakpoints that you have set, you
can use the Get-Breakpoint cmdlet to retrieve breakpoint information.

BAack To THE POWERSHELL GAME CONSOLE

Okay, it is time to turn your attention back to the chapter’s main project, the PowerShell
Game Console. In this project, you will create a text-based game console that displays a menu
of PowerShell game scripts, allowing players to start and play PowerShell games by entering
their menu numbers. Once players finish playing a selected game, the game ends and the
game console reappears, prompting the player to select another game to play.

Designing the Game

The PowerShell Game Console builds its menu on the fly based on the contents stored in the
folder where your PowerShell scripts are stored. Although the script automatically filters out
the display of any non-PowerShell script files, it is up to you to ensure that the folder only
contains game scripts. Other PowerShell scripts, including the PowerShell game console itself
and your standard PowerShell template script, should not reside in the folder.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

When executed, the PowerShell Game Console displays a numbered list of all the game scripts
in the PowerShell game folder and displays a prompt that allows players to start scripts based
on their assigned menu number. As you can see, the overall logical flow of the PowerShell
script is fairly simple. To set it up, we will complete its development in six steps, as outlined
here:

. Create a new script using the PowerShell script template.
. Define and initialize script variables.

. Create the Get-GamelListing function.

. Create the Write-Menulist function.

. Create the End-ScriptExecution function.

. Develop the script’s primary controlling logic.

A Ul A W=

Creating a New Script File

The first step in the creation of the PowerShell Game Console script is the creation of a new
scriptfilenamed GameConsole.psl.Create this script file using your PowerShell script template
file and then modify the new script file as shown here:

Kkhkkkkhkkhkkhkkhkhkkhkhkhkkhkkhkhkhkhhhkhhhhhhkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhkhkk

#

f# Script Name: GameConsole.psl (The PowerShell Game Console)

Version: 2.0

Author: Jerry Lee Ford, Jdr.

Date: October 20, 2008

#

Description: This PowerShell script provides a 1isting of PowerShell
f game scripts and allows the player to play any game by
entering its menu number.

#

Khkkkkkhkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhkhkhkhkk

Initialization Section

Functions and Filters Section

Main Processing Section

Chapter 10 « Debugging PowerShell Scripts

Defining and Initializing Script Variables

This script will use an array named $menulist to store a list of all the PowerShell scripts located
in the C:\MyScripts folder. In addition, the controlling logic outlined in the script’s main
processing section will be controlled by a while loop that monitors the value of $playAgainin
order to determine when to halt the execution of the PowerShell Game Console. Add the
following statements to the script file’s initialization section in order to define and initialize
these two variables.

$menulList = @() 4#Stores an array containing information about script games
$playAgain = "True" 4#Controls the execution of the Toop that manages game
ffexecution

Creating the Get-GamelListing Function

The PowerShell Game Console script has a number of custom functions, each of which is
responsible for performing a particular task. The code for the first function is shown below.
This function, named Get-GamelListing, is responsible for retrieving a list of files stored in
the C:\MyScripts folder and then storing the list in the $gamelist array. Note that the
ForEach-0Object cmdletis used to filter out any non-PowerShell script files before the resulting
list is stored in the $gamelist array. Once populated, the contents of the array are then
returned to the statement that called upon the function.

#This function gets the player's permission to begin the game
function Get-GamelListing {

$gamelList = @() #Stores an array containing a list of PowerShell scripts
$i = 0 4Used to set the index value of the array when adding elements
fto it

Clear-Host #Clear the screen

Write-Host #Display a game console header

Write-Host " ---------mmmmmmmmmeo e "
Write-Host " Windows PowerShell Game Console" -foregroundColor darkred
Write-Host " --------------mmmmmi e "

Set-Location C:\MyScripts #Specify the location of the game scripts

ffLoad an array with a 1ist of all the PowerShell scripts in the
fspecified folder

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

$gamelList = Get-ChildItem . *.psl # | ForEach-Object -process {$i++;$gamelist[$i] =
$_.Name }

$gameList #Return the contents of the array to the calling statement

You will need to customize your version of this script by substituting the
path and name of the folder where you have chosen to store your Windows
PowerShell games. You will also want to make sure that this folder only con-
tains game scripts and not other PowerShell scripts that you may have devel-
oped. You will also need to add this folder to your default path as described back
in Chapter [, “Introducing Windows PowerShell.”

Take note of the use of the ; (semicolon) character to separate $i++ from
$gamelList[$i] = $_.Nameinthe statement that loads the $gamelist array. Here,
the ; characterservesasanendof line marker, allowingyouto place two separate
statements on a single line.

Creating the Write-Menulist Function

The next function to be added to the script is the Write-Menulist function, which is outlined
below. This function is responsible for taking the list of filenames passed to it and using it to
build a numbered list of menu items.

#This function displays a menu Tisting of PowerShell games
function Write-Menulist {

param($1ist) #The 1ist of games to be displayed is passed as an array
$Counter = 0 #Used to number each menu item

Write-Host ""
ForEach ($i in $1ist) { {Iterate for each script stored in the array
$counter++ 4Increment the counter by 1

if ($counter -1t 10) { {Format the display of the first 9 scripts
Write-Host " $counter. $i" -foregroundColor blue

}
else { {fFormat the display of all remaining scripts

Chapter 10 « Debugging PowerShell Scripts @

Write-Host " $counter. $i" -foregroundColor blue

Write-Host ""n ------------mmii oo

}

As you can see, the list of filenames passed to this function is temporarily stored in an array
named $1ist, which is then processed using a ForEach loop. Upon each iteration of the loop,
a filename is displayed, preceded by a number that uniquely identifies the file (e.g., as spec-
ified by the value of $1).

Writing the End-ScriptExecution Function

The last function to be added to the script is the End-ScriptExecution function, shown below.
This function is responsible for displaying a message that thanks the player for using the
PowerShell Game Console and then, after a three-second pause, clears the screen.

function End-ScriptExecution {

Clear-Host #Clear the screen

Write-Host "“n Thank you for using the Windows PowerShell Game Console"
Start-Sleep 3 {fPause the execution of the script for 3 seconds
Clear-Host {Clear the screen

}

Developing the Programming Logic for the Main Processing Section

Now it is time to wrap things up by adding the programming logic in the Main Processing
section that will manage the overall execution of the PowerShell Game Console. The script
statements that make up this logic are outlined here:

$response = 0 {fStores player input

#Continue playing new games until the player decides to close the
ffgame console

@ Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

while ($playAgain -eq "True") {

#Call the function that generates an array containing a list of
figame scripts
$menulist = Get-Gamelisting

#Call function that converts the contents of the array into a 1ist
ffof menu items
Write-MenulList $menulist

#Prompt the player to pick a game to play
$response = Read-Host "“n Enter the menu number for a game or Q to quit"

#Prepare to close the game console when the user decides to quit

if ($response -eq "Q") {
$playAgain = "False" #Modify variable value in order to halt the Toop
continue ffRepeat the loop

fiConvert the player's input to an integer and then validate the
#player's input
if ([intl$response -1t 1) { Anything below 1 is not a valid menu number
Clear-Host #Clear the screen
Write-Host "'n “a“alnvalid selection.”
Read-Host #Pause the script until the player presses the Enter key
continue fiRepeat the Toop

if ([int]$response -gt $menulist.length) {
Clear-Host {fClear the screen
Write-Host "n “a“alnvalid selection.”
Read-Host #Pause the script until the player presses the Enter key
continue #iRepeat the Toop

ffFormat a string representing the command that will execute the
fscript selected by the user
$game = "./" + $menulist[$response -1]

Chapter 10 « Debugging PowerShell Scripts @

Invoke-Expression $game {ffExecute the selected script

Clear-Host {Clear the screen

End-ScriptExecution

As you can see, a while loop has been defined to control the overall execution of the script.
This loop executes until the player enters a menu command of Q, signaling that it is time to
close the console. Upon each iteration of the loop, the Get-GamelListing function is executed
in order to generate a list of games to be displayed. Next, the Write-MenulList function is
executed in order to display the list of PowerShell scripts that has been assembled. Next the
player is prompted to select a game. The player’s input is then evaluated. Once a valid menu
selection has been specified, a string is assembled that specifies the command required to
run the selected script and then the Invoke-Expression cmdlet is used to start the specified
PowerShell game by specifying the array index number of the selected menu item.

The Invoke-Expression cmdlet provides you with the ability to execute other
PowerShell scripts by passing the cmdlet the name and path of the script.

The Final Result

Well, that is it. If all has gone according to plan, your version of the PowerShell Game Console
should be ready to run. Ifyou have made a few typos and are getting errors, use the debugging
information presented in this chapter to track down the errors.

SUMMARY

Congratulations on completing the final chapter of this book. This chapter has helped to
round out your understanding of Windows PowerShell programming by teaching you how
to track down and fix problems that inevitably occur as part of the script development process.
You learned how to override the manner in which PowerShell responds to cmdlet errors. You
learned how to develop error handlers that trap and respond to errors. You also learned how
to trace the logical execution flow of your PowerShell scripts as well as how to keep an eye
on the values stored in variables at various stages of script execution.

Before you put down this book and move on to tackle other opportunities, why not spend a
few final minutes tackling the following list of challenges.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

CHALLENGES

I. Modify the PowerShell Game Console to give the player the
ability tostartnewgamesby enteringthe name of aPowerShell
script in addition to specifying its menu number.

2. Currently, the name and path of the folder where PowerShell
game scripts are stored is hardcoded in the script itself.
Considerenhancingthe Windows PowerShell Game Console to
use the registry to store the name and path of the game. In
addition, considergivingthe playertheoption of specifyingthe
name and path of a different folder where PowerShell script
games might be stored.

3. If you have a website, you might consider adding an option to
the PowerShell Game Console that allows the player to
automatically visit your website in order to check on the
availability of new PowerShell script games. This can be
accomplished using the New-0Object cmdlet and COM to load
your website using Internet Explorer.

Part

Appendices

This page intentionally left blank

(APPENDI X)

WHAT’S ON THE
ComMPANION WEBSITE?

0 become proficient with any programming language, you must spend

time working with the language, developing new scripts, and experiment-

ing with different programming techniques. Obviously, this means dedi-
cating yourself to the development of new PowerShell scripts in an effort to push
you into tackling more and more challenging tasks. It also helps to have a collec-
tion of source code which you can use as the basis for your new scripts.

Assuming that you have created each of the sample game scripts presented in
this book as you’ve gone along, you now have a good starter set of scripts from
which you can learn and expand upon. However, if you did not create one or
more of the sample game scripts outlined in this book, you are in luck. Copies of
every game script covered in this book have been uploaded to the book’s compan-
ion website, and they are ready for you to download. The website address is
www.courseptr.com/downloads. From there, enter the title of this book to locate
the files.

I wrote this book with the intention that you would read it from cover to cover. If
you read this book in this manner, then you should already have a good idea of
what each game script does. However, just in case you found yourself skipping
around a bit and did not review each chapter’s game script, I have provided a
summary of what each script does in Table A.1.

www.courseptr.com/downloads

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

TaBLE A. | PoOWERSHELL ScrRIPT FiILES LOCATED ON THE

CoMPANION WEBSITE

Chapter Application Description

Chapter | Knock-Knock Joke This script introduces PowerShell scripting by
demonstrating the steps involved in creating and
executing a script that tells knock-knock jokes.

Chapter 2 The Story of the Three Amigos This script demonstrates how to collect userinput
and use it in the creation of a mad-Llib.
Chapter 3 PowerShell Fortune Teller This script provides random answers to questions

asked by a player, providing different answers
based on the time of day.

Chapter 4 The Seinfeld Trivia Quiz This script demonstrates how to store and retrieve
datain variables in order to build a trivia game that
tests the player’s knowledge of Seinfeld TV trivia.

Chapter 5 Number Guessing Game This script demonstrates the implementation of
conditional logic through the development of a
number guessing game in which the player is
challenged to guess a secret number in as few
guesses as possible.

Chapter 6 Rock, Paper, Scissors This script re-creates a command-Lline version of
the classic game demonstrating how to control
script execution with a loop.

Chapter 7 PowerShell Hangman This script demonstrates how to organize scripts
using functions through the development of a
hangman word guessing game.

Chapter 8 PowerShell Tic-Tac-Toe This script re-creates the classic Tic-Tac-Toe game
through the development of a two-player
PowerShell game.

Chapter 9 PowerShell Blackjack This script demonstrates how to create a

Blackjack-styled card game that pits the player
against the computer.

Chapter 10 PowerShell Game Console This script brings together all of the programming
concepts covered in this book through the
creation of a game console that provides the
player with easy access to the book’s PowerShell
games.

L y

(APPENDI X)

WHAT NEXT?

s you no doubt have concluded after reading this book, Microsoft

PowerShell provides a robust, powerful scripting environment that goes

well beyond traditional shell scripting. Windows PowerShell provides an
entirely new programming language designed from the ground up to integrate
with and leverage the capabilities provided by the .NET Framework. As this book
has demonstrated, Microsoft PowerShell is a great programming language for
first-time programmers and computer hobbyists. Yet, it is also powerful enough
to satisfy the needs of professional programmers.

While you have already learned a great deal about how to program using Win-
dows PowerShell scripting, there is still a lot more to be learned. Therefore, rather
than viewing this book as the end of your Windows PowerShell scripting educa-
tion, you should view it as the beginning. To become a truly effective Microsoft
PowerShell programmer, you must continue to read and learn as much as possible.
To help get you started, I have provided this appendix, where you will find an
assortment of useful Windows PowerShell information. It includes information
about PowerShell IDEs, assorted PowerShell reading materials, websites, mailing
lists, and blogs.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Winbows PowerSHELL IDEs

As I was updating the second edition of this book, there were two third-party Windows
PowerShell IDEs available for use. These PowerShell IDEs provide an alternative to working
with Notepad or the Graphical Windows PowerShell.

N‘_‘.‘o\“ An [DE or integrated development environment is a graphical software de-
pEF! velopment tool that integrates a source code editor with other application
development tools to aid in the creation of scripts or applications.

The first PowerShell IDE is PowerShellPlus, which at the time I was working on this book
was available for $145 at http:/f[www.powershell.com/. PowerShellPlus provides a long list of
features, including:

e Statement color coding

e Direct command-line access

¢ Debugging features including support for breakpoints

* Context aware code completion

e Variable and property views

Figure B.1 shows an example of PowerShellPlus’s built-in Script Editor IDE.

(b 7 A = —_— ~\
y A-hde = oOmnm BN C- PowerShellPlus Script Editor - = %
kxecution | Edt View Smippel Codesignng
i) [Luipaine =t = a - m 7} Aulo-Ster | G
, =atep tart [to Cursor pe . |
s T Cancel = o New || New K
Fyecution ; - Debugger Optioms T | Rreakpains | Arguments
o Pal(Untitled) - %] RockPaperScisorspsl X || i b x
1= 8 —‘l
5l1 2
3 2
4
5
f
7
8
9
10
11
13
15
The 5
PowerShellPlus 18 £
manages the 13, §randomNo — New O objcct
i N 20{3 $number -
display of script a1
code, output, and 220 $queas = 0
variable and 1K '
Ready. Line 1 Charl
property values.

http://www.powershell.com/

Appendix B ¢« What Next?

The other PowerShell IDE is PowerShell Analyzer, which is available as a free download at
http://[www.powershellanalyzer.com. PowerShell Analyzer comes with lots of bells and whis-
tles that are designed to help you work faster and smarter when interacting with Windows
PowerShell and developing scripts. A sampling of PowerShell Analyzer features includes:

» Statement color coding

e Direct command-line access

* Automatic display of keyword syntax

e Variable and property views

Figure B.2 shows an example of PowerShell Analyzer in action.

p
& PowerShell Analyzer - The Original Graphical Powershell [1.0.2.7] e[]
File Edit Search Runspace Debug CodeCompletion Outlining Tools Community Help
BPOo-xE @b 05HdS &5 8A68(120 SEEIZ(IAa83R
& | nusgace? |
= Console Cutput XML Resitz Fplomer Prowvider Prplomer HTML Chart -

PSDeclgal”| Hangmanps1 |

The PowerShell
Analyzer provides
easy access to
tools that help
simplify and speed
up script
development.

J,

|trl Coll Chl |

0:00:00

RECOMMENDED READING

Microsoft provides its own PowerShell documentation in the form of a Getting Started guide
and a user guide. While first-time programmers and individuals new to PowerShell scripting
may find these guides challenging, they will serve as an excellent next step for you once you
have finished reading this book. Information on both of these guides is provided below.

Getting Started Guide for the Windows PowerShell

by Microsoft Corporation

http://www.powershellanalyzer.com

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Available as a Word document installed as part of Windows PowerShell. To access it, click on
Start > All Programs > Windows PowerShell > Getting Started.

Windows PowerShell Primer
by Microsoft Corporation

Available as a Word document installed as part of Windows PowerShell. To access it, click on
Start > All Programs > Windows PowerShell > User Guide.

LocATING MICROSOFT POWERSHELL RESOURCES ONLINE

Despite its relatively new arrival, PowerShell already has a significant presence on the Inter-
net. A great deal of information is available at the websites described in the sections that
follow. You will want to visit them regularly in order to stay on top of the latest developments.
You will also find that many of these websites provide access to free sample code, which you
can download and learn from.

One of the first places to start when you are ready to go online is Microsoft’s ScriptCenter
PowerShell page, located at http://[www.microsoft.com/technet/scriptcenter/hubs/msh.mspx,
as shown in Figure B.3.

(- — “
) Scripting with Windows PowerShell - Windows Intemet Exploser = | =
@LJ » | B hitp/iweew.microsoft comytechnet/scriptcenteshubs/meh.maps v | 43| x || oo -

W ¥ | B | Senpbng with Windows Powershell o s

United Skates Change | Al Morosoft Sies

Microsoft TochiNet | O [wen TR,
TechNet Home TechCenters Downigcads TechNet Program Subescriptions Sacurty Bulleonc Archive

Search for T,

Seripting with Windows PowerShell

Scrpt Center

Additional Resources
VBScript L

Windows PowerShell 2.0 CTp Downloads

i

= Winduws PuwerShell 2.0

guage

Visit the Microsoft
ScriptCener

PowerShell page - Windows PowerShell 2.0
to access all sorts i e
of Windows R
PowerShelL = Windows Powershell
Belease 1.0

resources.

http://www.microsoft.com/technet/scriptcenter/hubs/msh.mspx

Appendix B « What Next?

Wikipedia’s Windows PowerShell Page

You can find plenty of Windows PowerShell information in the Wikipedia online encyclope-
dia (http://www.wikipedia.org/wiki/powershell) as shown in Figure B.4. Here you will find
links to all kinds of articles, third-party tools, and websites.

-
& Windews PowerShell - Wikipedia. the free encyciepedia - Windews Intermet Explorer

G,

@_," = | W hrtped/en wikipedia crg/wili/ Powerthell - |4 x

W 4R Windows PowerShell - Wikipedia, the free encycl_ fa =
pedia ard grve the git of knowmisdge A Loq in | create account

;’ A "1»,, Make a donaton [
i aricke || @

odit (his page

a I'_. \‘.:L ;
<k Windows PowerShell
> 25

fom Wi cyeiape

“ :u :
WIKIPEDIA
Thy Froe Encyclopedsa Windows PowerShell is

nangalion

Windows PowerShell

Wikipedia’s
Windows
PowerShell pageis
maintained by a
global community
2 of PowerShell

: users.

Developed by

Initial rebease

There are plenty of other quality websites that provide information on PowerShell. For exam-
ple, you may want to check out the PowerShell Information Centre at http://[www.reskit.net/
powershell/index.htm, as shown in Figure B.5.

Another helpful site for you to check out is http://channel9.msdn.com/wiki/Windows
PowerShellQuickStart/. This site provides access to an online PowerShell Quick Start guide,
as shown in Figure B.6. This time saving web page provides easy access to an online command
reference.

http://www.wikipedia.org/wiki/powershell
http://www.reskit.net/powershell/index.htm
http://www.reskit.net/powershell/index.htm
http://channel9.msdn.com/wiki/WindowsPowerShellQuickStart/
http://channel9.msdn.com/wiki/WindowsPowerShellQuickStart/

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

The PowerShell
Information
Centre provides
links to
PowerShell
resources located
on the Internet.

The Channel9 Wiki
Windows
PowerShell Quick
Start page.

m | bt/ funsew reskit et/ powerthell index. htm

v!«,lx‘|.’@r A

Ve 40 | B PowerShel ROCKST

The PowerShell Information Centre

Links and associated resources for PowerShell, Microsoft's administrative scripting tool

Table of Contents

Getting PowerShell

Background and General infermation
Web Casts

Language Featuras

PowerShell Related Blogs

WMl And Networking with PowerShell
+ Objects in Powershell

Editor Syntax Files

« About Providers

About Cmdlets and Snap-ins

« Sample PowerShell Seripts

Getting PowerShell

The PowerShell Bits - what you need to get PowerShell running:

D N S L L o T (o S U [PP R SO S PSR PSP g g

G O

w4 [windowspowensheliquickstert | Channel 9

madn. P v{ﬁlxil.’ng:r

Fi

| wia | seanci | aBoUT

FOIT SAVE CANCRL

Windows P Quick Start. This containg 3 simple overview of the key parts of the lainguage syntax. This is not
roeand an altermnative to the full product manuek that will no doult snive in due coune, but b a weful reference f you know what you went to
d, bt just can't quite rermemier it Bary Strellens

Medificd By

The home page for the Channe Windcows

QUICK START

Arithmetic Operators (also see Unary and String operators) 2

+ additian, cancatenation Digg
* mubiplication, string repetition
/ dmmion

% moduhs

Wiki & W

.
SHARD

Fnendfei

Facebook

Array Comparison
Return all slements equalto T 123537 —q3

Appendix B « What Next?

Windows PowerShell News Group

Sometimes there is no better way to learn than to spend time sharing information with peers.
One way to do this is via newsgroups. Microsoft sponsors a newsgroup dedicated exclusively
to the PowerShell. You will find this newsgroup at http://[www.microsoft.com/communities/
newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell. Figure B.7 pro-
vides a glimpse of this web page and the kinds of discussions that occur.

s N\
B D e EeTeh - — - 5 =
@U *] o/ fwansmicrotoft.com/communities/ newsgroupt/ it/ en-us/default aspudgzmice v | ¥ | X || Google s -

W& 4N @ Dscutnons in microsch public windows powers. &

= WHI Type Accelerators
3 posts 10,
+] Help with Change UNS [WINKS Powersh,

|
]
&
3
F
n
H

Microgoft Digcussion Groups Home | Commun ome | Communities Woridwids

— Di In microsoft public. windows_powershell

0 Oistussian Groups Heme

D mureseft public.access = Ssarch For In: | microsofl.public.windows. powershell
] micreseft.public.active

[mierasaft. public.actives] tawew 7 Show: | all thraads | &

[Dimitressh.public.ado 5 Problem resdieg iy resrbuly 9 -

[micresef.public.ads 1 pest 10/23/2008|

o]

o micrssoft.publ,

[micrassh.public.ar

(D micressft. public.arabic

pasts
= simple script won't work
2 posts

@ @6 6 G G @

] get-wmishiect guestion

R FiGURE B.7
Microsoft’s
Windows

B e P - PowerShell

Newsgroup.

PowerShell Blogs

Another extremely useful place for meeting fellow programmers and exchanging questions
and answers is PowerShell blog websites. One such blog is the one belonging to the Windows
PowerShell development team, located at http://blogs.msdn.com/PowerShell/, as shown in
Figure B.8.

As you might imagine, this site is very popular within the PowerShell community and you
will find no shortage of technical discussions going on every day.

Another good blog website is the Monad Technology Blog, which you will find at http:/|
blogs.msdn.com/monad/archive/2005/09/02/460075.aspx, as shown in Figure B.9.

http://www.microsoft.com/communities/newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell
http://www.microsoft.com/communities/newsgroups/list/en-us/default.aspx?dg=microsoft.public.windows.powershell
http://blogs.msdn.com/PowerShell/
http://blogs.msdn.com/monad/archive/2005/09/02/460075.aspx
http://blogs.msdn.com/monad/archive/2005/09/02/460075.aspx

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

~ 42 x [[Googie

Walcoma o MSON SBlogs Sign In | Join | Help

The Windows
PowerShell
development
team’s blog.

The Monad Blog.

PowerShell Team Blog

Changing the world one-liner al a lime.

Weadnesday, Octobar 22, 2008 1:37 AM

Another Great Don Jones Video Demo

This month's TechiNet magazine has a great wdeo deme from Don Jones where he uses
WHMI to generate a simple Software Inventory Repart. The great thing about Don is his
awesome abidlity to bresk things down into 2 seres of simple steps. He does this by
using Get-WMIDbject from the command line and then goes through 3 senes of sampts to
ilustrate vanous techmigues that give you better and better results {more power, better
compasabiliry).

If you are an advanced saripter, you probably already know the techniques that Don s
illustrating but this is a3 must see for people starting soripting - it i just 5o logical and
straightforward. ['ve attended Don's traning classes and his sessions at conferences
and they are all great so f vou have the opportundy - vou should definately run to his
talks.
You can see tes video demo HERE.

Cheers!
Jeffrey Snover [MSFT]

Windows M3 Partner Archutect
Visit the Windows PowerShell Team blog at: hittp:/ /blogs.msdn.com/PowerShell
Vigit the Windows PownrShall SoriptCentor ot

hitp: / fwwewmicrosoft.com /technet / scripteenter fhubs/ msh mspx.

Pusted by PowerShellTeam | 2 Comments

Emit-XML

This Blog

About

Syndication

RS5 2.0
Atom 1.0

Go

A tive Dirwctory Add-Module Add-
TYPE ApartimencStars Bank
CMDLET
CMDLET:FORMAT
CMOLET:UTILITY Custom Saagin
Discaverability Cag
DOCUMENTATION
DOTNET ENVIRONMENT
ERROR s.eor: FAQ
FORMATEXTENSION Get-

o=

Welcoma o MSOM Blogs Sign In | Join | Help

Monad

Monad Technology Blog
MshObject and Methods that take object

Every once in 2 while peopie | including me) run into trouble calling methods that take object.
Why? Well. as | told you earber obgects in MSH are wrapped by an mwsible MshObgect. As
turnis oul that this msible obyect is not dways so invisible. Take a look at the followng

HSHiSkey = get-iten
MSHiShesh = @(}
HSH>Shash{Skey] = "too'
WSl sshash|Skey]

foo

HSH»$hazh Containsey($kay)
Fales

MSE>»

VWaird huh? On the ane hand you can use the key ta sccess the abject Cin the ather hand i tells
you that the hashtable dossn really have that key. What's goeng o7 Well, # you take a look at
the method ContainsKey (Here's a neat tnck on how to do i)

MSH)Shesh. Containshey

RS5 2.0
Atom 1.0

Search

9|

Tags

No tage have been created ar used yer

Thes posting i1s provided “as s’
with no warrantmes, and confers
no nights. You assume all nisk for
your use. Also, the opinions
expressed are that of Monad
Team members, not Mkrosoft’s,

|

Appendix B ¢ What Next?

As the name implies, this blog was set up back in the early days before Microsoft gave the

PowerShell its new name. This blog’s primary benefit is that it provides you with access to
discussions dating as far back as 2005.

One more blog worth mentioning is the PowerShell Guy blog run out of http://thepowershell
guy.com/blogs/posh/, as shown in Figure B.10.

—

@@ + Q) g thepowensheliguy com/bloge posthy | 43| x [Gongee P~

W G | Q) The PowesShel Guy

W .

Welcame b TherowershellGuy.caom Sagn in |

The PowerShell Guy

get-Shell | where {($_.pipefine -contains Objects}

Thrsdy, October 16, 2009 7:37 PH
About 1 *heart* PowerShell
When | 3aw the example in I *heart® pythan , and the remark about Powershellinie, [
could not resist doing the same exercise in Powershell

= powershel
$codes =04}

$emstingCodes = "popor’, binky'
$codes['poipoi’}= 0

Powershell FormsLib example
Sc=n et random
= (150 {
Ga stmp =
1.6 [% {$tmp += [char]$r Next{97,123)}
jondiirol=0

NET Active Directory ao

Ao e £ Duphcates FiGURE B.10
Method 200 O 2007

$duplicates = $codes.keys|? {$existngCodes -contains $_} The PowerShell
o yaka none Guy blog.

The PowerShell Guy blog is a popular blog that provides a lot of insight into PowerShell and
it is filled with code examples.

http://thepowershellguy.com/blogs/posh/
http://thepowershellguy.com/blogs/posh/

This page intentionally left blank

GLOSSARY

.NET Framework. A Microsoft developed framework designed to support the
development of desktop, network, and Internet-based applications and scripts.

.NET Framework Class Library. A hierarchical collection of classes that can be
used to instantiate objects based on those classes.

.ps1. The file extension used by Windows PowerShell scripts.

$_. A special variable created and maintained by Windows PowerShell that is
automatically assigned the name of the current object in the PowerShell pipeline
and, in the case of the Where-0bject cmdlet, is used to reference each object in a
collection.

Add-Content. A Windows PowerShell cmdlet that adds to the content of the spec-
ified item.

Add-History. A Windows PowerShell cmdlet that adds entries to the session
history.

Add-Member. A Windows PowerShell cmdlet that adds a user-defined custom
member to an object.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Add-Module. A Windows PowerShell 2.0 cmdlet that allows you to load a script ora DLL as a
module.

Add-PSSnapIn. A Windows PowerShell cmdlet that adds one or more PSSnaplIn(s) to the cur-
rent PowerShell console.

Add-Type. AWindows PowerShell 2.0 cmdlet that allows you to load a DLL or assembly instead
of using the .NET Framework to access resources.

Alias. A shortcut to another cmdlet.
Argument. Data passed to a script or function for processing.
Array. An indexed list of values.

Associative Array. Sometimes referred to as hash or dictionary, which provides efficient and
fast access to data stored in key-value pairs.

Background Jobs. (PSJob) The ability to execute cmdlets in the background, locally or on
remote systems, without tying up the Windows PowerShell command prompt.

Breakpoint. A marker that identifies a line, variable, or command at which Windows
PowerShell script execution is paused to allow for debugging.

Classes. Templates for creating objects that Windows PowerShell can access and manipulate.

Clear-Content. A Windows PowerShell cmdlet that removes the content from an item or file
while leaving the file intact.

Clear-History. A Windows PowerShell 2.0 cmdlet that clears out the list of commands that
have been executed during the current session.

Clear-Item. A Windows PowerShell cmdlet that sets the item at the specified location to the
"clear" value specified by the provider.

Clear-ItemProperty. A Windows PowerShell cmdlet that removes the property value from a
property.
Clear-Variable. A Windows PowerShell cmdlet that removes a value from a variable.

Cmd.exe. The predecessor to the Windows PowerShell command shell.

Cmdlets. Predefined commands, representing .NET classes, which are designed to perform a
specific task.

Command Shell. A text-based interface that sits between the user and the operating system.

Glossary

COM (Component Object Mode). A Microsoft technology that allows Windows PowerShell
to programmatically interact with and control COM objects, including ActiveX controls and
various Windows applications.

Command.com. The original Windows command line shell.
Compare-Object. A Windows PowerShell cmdlet that compares the properties of objects.

Complete-PSTransaction. A Windows PowerShell 2.0 cmdlet that commits or completes a
transaction.

ConvertFrom-Csv. A Windows PowerShell 2.0 cmdlet that exports a comma-separated value.

ConvertFrom-SecureString. A Windows PowerShell cmdlet that exports a SecureString to a
safe, persistent format.

ConvertFrom-StringData. A Windows PowerShell 2.0 cmdlet that converts a string contain-
ing a “name-value” pair to an associative array.

Convert-Path. A Windows PowerShell cmdlet that converts the path of the item given from
a PowerShell path to a provider path.

ConvertTo-Csv. AWindows PowerShell 2.0 cmdlet that converts output to a comma-separated
value.

ConvertTo-Html. A Windows PowerShell cmdlet that converts the input to an HTML table.

ConvertTo-SecureString. A Windows PowerShell cmdlet that creates a SecureString from a
normal string created by Export-SecureString.

ConvertTo-Xml. A Windows PowerShell 2.0 cmdlet that converts output into an XML format.

Copy-Item. A Windows PowerShell cmdlet that calls a provider to copy an item from one
location to another within a namespace.

Copy-ItemProperty. A Windows PowerShell cmdlet that copies a property between locations.

CSV (Comma-Separated Value File). A file format that is used to store comma-separated data
as records separated by newlines. This format is commonly used by applications such as
Microsoft Excel.

Disable-PSBreakpoint. A Windows PowerShell 2.0 cmdlet that turns off breakpoints.
Do Until. A PowerShell statement that iterates until a specified condition is True.

Do While. A PowerShell statement that iterates as long as a specified condition is True.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Enable-PSBreakpoint. A Windows PowerShell 2.0 cmdlet that turns on or re-enables disabled
breakpoints.

ErrorRecord. An object that is created anytime an error occurs and which provides access to
information about the error.

Eventing. The ability to set up Windows PowerShell so that it listens for and reacts to system
events.

Exception. An event that occurs whenever an error is discovered in a Windows PowerShell
script.

Export-Alias. A Windows PowerShell cmdlet that exports an alias list to a file.

Export-Clixml. A Windows PowerShell cmdlet that produces a Clixml representation of a
PowerShell object.

Export-Console. AWindows PowerShell cmdlet that exports the changes made to the current
console.

Export-Csv. A Windows PowerShell cmdlet that creates CSV strings from input.

Export-ModuleMember. A Windows PowerShell 2.0 cmdlet that exports a function or cmdlet
from a module.

Expression. A statement that is evaluated and produces a result.

Filter. A programming construct similar to a function but which is designed to more effi-
ciently process large amounts of object pipeline data.

Flowchart. A tool used by programmers to graphically depict the logical flow of all or part of
a script.

For. A PowerShell statement that iterates a set number of times.

ForEach. A PowerShell statement that iterates through all of the elements stored in a collec-
tion or array.

ForEach-Object. A Windows PowerShell cmdlet that applies a script block to each object in
the pipeline.

Format-Custom. A Windows PowerShell cmdlet that formats output display as defined in
additions to the formatter file.

Format-List. A Windows PowerShell cmdlet that formats objects as a list of their properties
displayed vertically.

Format-Table. A Windows PowerShell cmdlet that formats output as a table.

Glossary

Format-Wide. A Windows PowerShell cmdlet that formats objects as a table of properties.
Function. A collection of statements that is called and executed as a unit.

Get-Acl. A Windows PowerShell cmdlet that gets the access control list associated with a file
or an object.

Get-Alias. A Windows PowerShell cmdlet that returns alias names for cmdlets.

Get-AuthenticodeSignature. A Windows PowerShell cmdlet that gets the signature object
belonging to a file.

Get-ChildItem. A Windows PowerShell cmdlet that retrieves the child items for the specified
location on a drive.

Get-Command. A Windows PowerShell cmdlet that retrieves information about a command.

Get-Content. A Windows PowerShell cmdlet that returns the content from the item at the
specified location.

Get-Credential. A Windows PowerShell cmdlet that gets a credential object based on a
password.

Get-Culture. A Windows PowerShell cmdlet that gets culture information.
Get-Date. A Windows PowerShell cmdlet that gets current date and time.

Get-Event. A Windows PowerShell 2.0 cmdlet that retrieves events from event logs and event
tracing logs.

Get-EventLog. A Windows PowerShell cmdlet that gets EventLog data for the machine.
Get-ExecutionPolicy. A Windows PowerShell cmdlet that gets the effective execution policy.
Get-Help. A Windows PowerShell cmdlet that opens a help file.

Get-History. A Windows PowerShell cmdlet that gets a listing for the current session history.
Get-Host. A Windows PowerShell cmdlet that retrieves host information.

Get-Item. A Windows PowerShell cmdlet that gets an object that represents a namespace
item.

Get-ItemProperty. A Windows PowerShell cmdlet that retrieves properties belonging to an
object.

Get-Location. A Windows PowerShell cmdlet that displays the current location.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Get-Member. A Windows PowerShell cmdlet that enumerates the properties, methods, and
property sets for the specified object.

Get-Module. A Windows PowerShell 2.0 cmdlet that retrieves one or more loaded modules,
returning a PSModulelInfo object.

Get-PfxCertificate. A Windows PowerShell cmdlet that gets the pfx certificate information.
Get-Process. A Windows PowerShell cmdlet that returns a list of active processes.

Get-PSBreakpoint. A Windows PowerShell 2.0 cmdlet that retrieves a listing of all the cur-
rently set breakpoints.

Get-PSCallStack. A Windows PowerShell 2.0 cmdlet that retrieves and displays the current
call stack.

Get-PSDrive. A Windows PowerShell cmdlet that gets drive information.
Get-PSEvent. A Windows PowerShell 2.0 cmdlet that subscribes to a specified type of event.

Get-PSEventSubscriber. A Windows PowerShell 2.0 cmdlet that displays a list of all event
subscripts for the current working session.

Get-PSJob. A Windows PowerShell 2.0 cmdlet that retrieves background jobs.
Get-PSProvider. A Windows PowerShell cmdlet that returns provider information.
Get-Random. A Windows PowerShell 2.0 cmdlet that generates a random number.

Get-Runspace. A Windows PowerShell 2.0 cmdlet that retrieves runspaces created in the cur-
rent working session.

Get-PSSnapIn. A Windows PowerShell cmdlet that gets a list of registered PSSnaplIns.
Get-Service. A Windows PowerShell cmdlet that gets a list of services.
Get-TraceSource. A Windows PowerShell cmdlet that lists trace source properties.
Get-UICulture. A Windows PowerShell cmdlet that gets the uiculture information.
Get-Unique. A Windows PowerShell cmdlet that gets the unique items in a sorted list.
Get-Variable. A Windows PowerShell cmdlet that retrieves a PowerShell variable.

Get-WmiObject. A Windows PowerShell cmdlet that creates a WMI Object or the list of WMI
classes available on the system.

Global Scope. The scope that is established whenever a new PowerShell session is started.

Glossary

Graphical Help File. A graphical Windows help file that allows you to search, view, and print
Windows PowerShell help files.

Graphical Windows PowerShell. A multi-tabbed shell and script editor that supports syntax
color-coding and line numbering as well as Intellisense and tab completion.

Group-Object. A Windows PowerShell cmdlet that groups the objects containing the same
property value.

If. A PowerShell statement that evaluates a comparison and then executes or skips the exe-
cution of a set of statements located in an associated code block.

Import-Alias. A Windows PowerShell cmdlet that imports an alias list.
Import-Clixml. A Windows PowerShell cmdlet that imports a Clixml file.

Import-Csv. A Windows PowerShell cmdlet that extracts data from a CSV list and passes
objects down the object pipeline.

Import-LocalizedData A Windows PowerShell 2.0 cmdlet that imports language-specific
information into scripts and functions based on the UI culture setting.

IntelliSense. Microsoft’s implementation of autocompletion, which assists programmers in
the completion of code statements.

Invoke-Command. A Windows PowerShell 2.0 cmdlet that executes a local or remote
command.

Invoke-Expression. A Windows PowerShell cmdlet that executes a string as an expression.
Invoke-History. A Windows PowerShell cmdlet that executes a previously run command.
Invoke-Item. A Windows PowerShell cmdlet that invokes an executable or opens a file.
Join-Path. A Windows PowerShell cmdlet that combines path elements into a single path.
Local Scope. Refers to the current scope, which can be global, private, or script.

Logical Error. An error that occurs when a script produces unexpected results as the result
of faulty programming logic.

Loop. A set of programming statements that is repeatedly executed as a unit.

Measure-Command. A Windows PowerShell cmdlet that tracks the run time for script blocks
or cmdlet.

Measure-Object. A Windows PowerShell cmdlet that measures different aspects of objects.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Method. A predefined collection of code that can be executed in order to interact with and
control its associated object.

Move-Item. A Windows PowerShell cmdlet that moves an item from one location to another.

Move-ItemProperty. A Windows PowerShell cmdlet that moves a property from one location
to another.

New-Alias. A Windows PowerShell cmdlet that creates a new cmdlet-alias pairing.
New-Item. A Windows PowerShell cmdlet that creates a new item in a namespace.

New-ItemProperty. A Windows PowerShell cmdlet that sets a new property for an item at a
specified location.

New-Object. A Windows PowerShell cmdlet that creates a new .NET object.
New-PSDrive. A Windows PowerShell cmdlet that sets up a new drive.
New-PSEvent. A Windows PowerShell 2.0 cmdlet that creates a new event.

New-Runspace. A Windows PowerShell 2.0 cmdlet that creates a persistent connection to a
PowerShell session (local or remote).

New-Service. A Windows PowerShell cmdlet that creates a new service.
New-TimeSpan. A Windows PowerShell cmdlet that creates a TimeSpan object.
New-Variable. A Windows PowerShell cmdlet that defines a new variable.

Non-terminating Error. An error that does not prevent the script from continuing its
execution.

Object. A self-contained resource that contains information about itself as well as the code
required to access and manipulate it.

Out-Default. A Windows PowerShell cmdlet that sets the default controller of output.
Out-File. A Windows PowerShell cmdlet that sends command output to a file.

Out-GridView. AWindows PowerShell 2.0 cmdlet that displays output in an interactive table,
allowing results to be sorted and searched.

Out-Host. A Windows PowerShell cmdlet that sends object pipeline data to the host.
Out-Null. A Windows PowerShell cmdlet that sends output to a null.
Out-Printer. A Windows PowerShell cmdlet that sends the output to the printer.

Out-String. A Windows PowerShell cmdlet that sends string output to the object pipeline.

Glossary

Pipeline. A logical connection between two commands that supports the passage of one
command’s output to another command where it is received as input.

Pop-Location. A Windows PowerShell cmdlet that changes the current working location to
the location specified by the last entry added onto the stack.

Pop-Runspace. A Windows PowerShell 2.0 cmdlet that terminates a remote interactive
session.

Precedence. The order in which mathematic operations are executed.
Private Scope. A scope that is not visible or accessible to other scopes.
Properties. Object attributes that describe particular features of the object.

Provider. A model that provides Windows PowerShell with access to hierarchical repositories
including the Windows file system and the Windows registry.

Pseudo Code. A term used to describe an English-like outline of all or part of a script or
application.

Push-Location. A Windows PowerShell cmdlet that pushes a location onto the stack.
Push-Runspace. A Windows PowerShell 2.0 cmdlet that starts a remote interactive session.
Read-Host. A Windows PowerShell cmdlet that collects a line of input from the host console.
Receive-PSJob. AWindows PowerShell 2.0 cmdlet that retrieves output from background jobs.
Register-ObjectEvent. AWindows PowerShell 2.0 cmdlet that registers an event subscription.

Register-PSEvent. AWindows PowerShell 2.0 cmdlet that allows you to register with a specific
type of event.

Register-WMIEvent. A Windows PowerShell 2.0 cmdlet that allows you to register with a
specific WMI event.

Registry. A Windows repository that stores configuration data for the operating system as
well as for hardware, software, network, and user settings.

Registry Key. Logical containers used to store registry keys and values.
Regular Expression. A pattern used to describe matching data.

Remote Execution. The ability to remotely execute a Windows PowerShell script on a net-
work computer over which you have access permissions.

Remove-Item. A Windows PowerShell cmdlet that calls a provider to remove an item.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Remove-ItemProperty. A Windows PowerShell cmdlet that removes a property and its value
from the specified location.

Remove-Module. AWindows PowerShell 2.0 cmdlet that removes a PSModulelnfo object from
the list of loaded modules.

Remove-PSBreakpoint. A Windows PowerShell 2.0 cmdlet that deletes breakpoints from the
current working session.

Remove-PSDrive. A Windows PowerShell cmdlet that removes a drive.
Remove-PSEvent. A Windows PowerShell 2.0 cmdlet that unsubscribes from an event.
Remove-PSJob. A Windows PowerShell 2.0 cmdlet that deletes a background job.

Remove-PSSnapIn. A Windows PowerShell cmdlet that removes PSSnaplns from the current
console.

Remove-Runspace. AWindows PowerShell 2.0 cmdlet that terminates one or more runspaces.
Remove-Variable. A Windows PowerShell cmdlet that deletes a variable and its value.

Remove-WMIObject. A Windows PowerShell 2.0 cmdlet that deletes WIM instances and
classes.

Rename-Item. A Windows PowerShell cmdlet that changes an item’s name.
Rename-ItemProperty. A Windows PowerShell cmdlet that renames a property.

Reserved Word. A keyword that Windows PowerShell has predefined as having a special
purpose.

Resolve-Path. A Windows PowerShell cmdlet that resolves the wildcard characters in a path.
Restart-Service. A Windows PowerShell cmdlet that restarts a service that has been stopped.

Resume-Service. A Windows PowerShell cmdlet that resumes a service that has been
suspended.

Runspaces. Separate managed execution spaces in which Windows PowerShell scripts can be
executed.

Run-time Error. An error that occurs when a script attempts to perform an illegal action such
as the division of a number by zero.

Script Cmdlets. Custom cmdlets created using the Windows PowerShell scripting language.

Script Scope. The scope that is established whenever a script is executed and which ends
when the script stops executing.

Glossary

Select-Object. A Windows PowerShell cmdlet that selects objects based on parameters spec-
ified in the command string.

Select-String. A Windows PowerShell cmdlet that searches through strings or files for match-
ing patterns.

Set-Acl. A Windows PowerShell cmdlet that sets Access Control List properties.
Set-Alias. A Windows PowerShell cmdlet that maps an alias to a cmdlet.

Set-AuthenticodeSignature. A Windows PowerShell cmdlet that places an authenticode
signature in a PowerShell script.

Set-Content. A Windows PowerShell cmdlet that sets the content in the item.
Set-Date. A Windows PowerShell cmdlet that sets the system time.
Set-ExecutionPolicy. A Windows PowerShell cmdlet that establishes execution policy.

Set-Item. A Windows PowerShell cmdlet that sets the value of a pathname within a provider
to a specified value.

Set-ItemProperty. A Windows PowerShell cmdlet that sets a property to a specified value.
Set-Location. A Windows PowerShell cmdlet that sets the current working location.
Set-PSBreakpoint. A Windows PowerShell 2.0 cmdlet that creates a new breakpoint.

Set-PSDebug. A Windows PowerShell cmdlet that turns on PowerShell’s script debugging
features.

Set-Service. A Windows PowerShell cmdlet that makes changes to service properties.

Set-StrictMode. A Windows PowerShell 2.0 cmdlet that configures and enables or disables
strict mode for the current scope.

Set-TraceSource. A Windows PowerShell cmdlet that modifies options and trace listeners
from the specified trace source instance.

Set-Variable. A Windows PowerShell cmdlet that assigns a value to a variable or creates a
variable if it does not exist.

Set-Wmilnstance. A Windows PowerShell 2.0 cmdlet that creates or changes a WMI class
instance.

Sort-Object. A Windows PowerShell cmdlet that sorts the input objects based on property
values.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Special Variables. A collection of variables created and managed by Windows PowerShell
that provides access to commonly used information.

Split-Path. A Windows PowerShell cmdlet that streams a string with the qualifier, parent
path, or leaf item.

Start-PSDebug. A Windows PowerShell 2.0 cmdlet that starts the interactive PowerShell
debugger.

Start-PSJob. A Windows PowerShell 2.0 cmdlet that starts a background job.
Start-PSTransaction. A Windows PowerShell 2.0 cmdlet that begins a new transaction.
Start-Service. A Windows PowerShell cmdlet that starts a service that has been stopped.

Start-Sleep. A Windows PowerShell cmdlet that suspends shell, script, or runspace activity
for the specified amount of time.

Start-Transcript. A Windows PowerShell cmdlet that starts a transcript for a command shell
session.

Stop-Process. A Windows PowerShell cmdlet that stops an active process.
Stop-PSJob. A Windows PowerShell 2.0 cmdlet that terminates a background job.
Stop-Service. A Windows PowerShell cmdlet that stops an active service.
Stop-Transcript. A Windows PowerShell cmdlet that stops the transcription process.

Subclass. A class that inherits base object definitions from its parent class and includes its
own modifications.

Suspend-Service. A Windows PowerShell cmdlet that suspends an active service.

Switch. A statement used to define a collection of different test and code blocks, each of which
evaluates against the same expression.

Syntactical Error. An error that occurs as a result of not following the syntax requirements
of the PowerShell scripting language.

Tab Completion. An editing feature that enables you to type a part of a command and then
to press the Tab key to obtain assistance in filling out the rest of the command.

Tee-Object. A Windows PowerShell cmdlet that sends input objects to two different places.
Terminating Error. An error that halts the execution of a PowerShell script.

Test-Path. A Windows PowerShell cmdlet that returns True if a path exists and False if it
does not.

Glossary

Trace-Command. A Windows PowerShell cmdlet that enables the tracing of a trace source
instance.

Trace. The process of tracing the execution of script statements when executing a script.

Transaction. The exchange of a sequence of data, that unless completed in its entirety, can
be rolled back and cancelled.

Trap Handler. A collection of statements that are executed when an exception occurs.

Try-Finally-Catch. A structure for handling exceptions in order to gracefully manage script
erTors.

Undo-PSTransaction. A Windows PowerShell 2.0 cmdlet that rolls back and undoes a
transaction.

Unregister-PSEvent. A Windows PowerShell 2.0 cmdlet that cancels an event registration.
Update-FormatData. A Windows PowerShell cmdlet that modifies format data files.

Update-List. A Windows PowerShell 2.0 cmdlet that adds and removes items from a property
value containing a collection of objects.

Update-TypeData. A Windows PowerShell cmdlet that updates the types.psixml file.

Use-PSTransaction. A Windows PowerShell 2.0 cmdlet that allows the current transaction to
be applied against transacted objects.

Values. Containers in which actual data is stored in the Windows registry.
Variable. A reference to data that is stored in memory.

Wait-Process. A Windows PowerShell 2.0 cmdlet that waits for the specific process to
complete.

Wait-PSEvent. A Windows PowerShell 2.0 cmdlet that waits for an event before continuing.

Wait-PSJob. A Windows PowerShell 2.0 cmdlet that waits for all jobs or a specified job to
complete.

Where-Object. A Windows PowerShell cmdlet that filters the input from the object pipeline.
While. A PowerShell statement that iterates as long as a specified condition is True.

Windows Remote Management (WinRM). A Microsoft implementation of the WS-
Management Protocol, a Simple Object Access Protocol (SOAP).

WMI (Microsoft’s Windows Management Instrumentation). A system management inter-
face designed to facilitate access to system information.

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Write-Debug. A Windows PowerShell cmdlet that writes debug messages.

Write-Error. A Windows PowerShell cmdlet that creates an error object and passes it through
the object pipeline.

Write-Host. A Windows PowerShell cmdlet that displays object data.
Write-Output. A Windows PowerShell cmdlet that adds an object to the object pipeline.
Write-Progress. A Windows PowerShell cmdlet that sends progress records to the host.

Write-Verbose. A Windows PowerShell cmdlet that writes a string to the host's verbose
display.

Write-Warning. A Windows PowerShell cmdlet that writes warning messages.

WS-Management protocol. A Simple Object Access Protocol (SOAP) that supports communi-
cation between different hardware and operating systems.

XML. A markup language that facilitates the definition, storage, and transmission of data
between applications.

INDEX

- unary operator, 135

! operator, 171

character, 67

$ character, 133

$_ variable, 108, 138, 231-232, 389
$args variable, 224-225

$error special variable, 349
$ErrorActionPreference variable, 349-351
$input variable, 227

$My]Job variable, 103
$PSConsoleWindow object variable, 48
$result variable, 229

$RunSP variable, 101

$status variable, 117-118

$time variable, 117

$userReply variable, 28

$x variable, 310

* operator, 23, 130, 136

. (period) character, 254

; (semicolon) character, 370

? character, 24

\ character, 254

"a escape character, 293

“n character, 128

"t character, 128

{} characters, 134

| character, 252

+ operator, 129, 136, 141-142, 144

+ regular expression quantifier character, 255

+= operator, 129
> redirection operator, 262
>> pipe operator, 263

A

About-PSJob cmdlet, 99
-action parameter, 328

Add Criteria button, Out-GridView cmdlet’s

graphical window, 282
Add-Content cmdlet, 91, 264, 389
Add-History cmdlet, 91, 389
Add-Member cmdlet, 91, 389
Add-Module cmdlet, 91, 390
Add-Number function, 223-227
Add-PSSnapln cmdlet, 91, 390
Add-Type cmdlet, 91, 390
aliases, 19-20, 28, 109-111, 390
allsigned security level, 15
alternative patterns, matching, 253
Analyze-Results function, 336-337
-and operator, 172
application data retrieval, 313
arguments, 222-227, 390

assigning default values to, 226-227
overview, 222
passing, 223-225
specifying data type, 225-226
arithmetic operators, 135, 161
arrays, 133, 139-142, 390
combining, 141-142
creating, 140
deleting and inserting elements, 142
modifying element values, 141
overview, 139
size of, 141

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

assignment operators, 137
associative arrays, 143-145, 390
accessing data, 143
creating, 143
deleting key-value pairs, 145
overview, 143
populating at creation time, 144
removing contents, 145
asynchronous notifications, 325
attributes, 86-87
AutoReset property, 329
-BackgroudColor parameter, 332

background jobs, 11, 98-106, 390
creating, 100-101
deleting, 105-106
executing, 100-101
overview, 98-99
retrieving information about, 101-102
retrieving output, 102-103
stopping execution, 104-105
waiting for completion of, 103-104
BackgroundColor properties, 48
BIOS information retrieval, 310-311
Blackjack game. See PowerShell Blackjack
game
brackets, 255-256
break command, 201-202
Break termination option, trap handler, 352
breakpoint cmdlets, 364, 367
breakpoints, 365, 390

C

case sensitivity, 97, 133, 172-173
catch blocks, 353-358
Categorylnfo property, 348

cd command, cmd.exe shell, 62
character class patterns, 255-256

characters, 254

See also metacharacters

#, 67

$,133

* 23

; (semicolon), 370

?, 24

\, 254

“a escape, 293

“n, 128

°t,128

{},134

[, 252

+ regular expression quantifier, 255

escape, 127-129

period (.), 254

wild card, 23-24
Check-Registry function, 333-334
Check-Results function, 288-289, 292
class library, 8
class library, .NET, 85-86
classes, 85, 390
clear alias, 28
Clear method, 145
clear output command, 57
Clear-Board function, 284
Clear-Content cmdlet, 91, 269, 390
Clear-History cmdlet, 91, 390
Clear-Host cmdlet, 27-28, 48-49, 68
Clear-Item cmdlet, 91, 390
Clear-ItemProperty cmdlet, 91, 390
Clear-Variable cmdlet, 91, 390
cls alias, 28
-cmatch operator, 251-252
cmd.exe shell, 7, 9-10, 39, 62, 390

cmdlets, 90-98, 322-325. See also specific cmdlets

by name
breakpoint, 364, 367
creating custom, 322-325

loading and executing, 324
overview, 322-324
pipeline data, 324-325
defined, 390
executing, 18-20
Get-Help, 97-98
listed, 91-97
overview, 8,11, 17, 90
reformatting output, 264-269
Format-List cmdlet, 264-266
Format-Table cmdlet, 266-269
overview, 264
script, 398
scripting, 12
-cnotmatch operators, 252
code block placeholder, 163
code reuse, 222
collection parameter, foreach loop syntax, 196
color attributes, 45-46
colors, 48
Colors tab, PowerShell Properties dialog
window, 45-46
columns, Out-GridView cmdlet output, 278
command console, 18, 35-77
accessing Windows PowerShell, 39-40
configuring, 41-50
customization options, 42-46
editing features, 49-50
overview, 41-42
scripting console configuration, 46-49
customizing, 40-41
edit enhancements, 50-53
Get-History cmdlet, 53
overview, 50
tab completion, 50-53
Graphical Windows PowerShell, 54-61
accessing Graphical Help files, 60-61
configuring output pane, 55-57
creating additional runspaces, 59-60

Index

editing and executing scripts, 57-58
executing commands, 55
overview, 54
hierarchical data stores, 62-66
overview, 35-36
Story of Three Amigos game, 66
collecting additional inputs, 71-73
creating new script, 67-68
declaring script variables, 68
displaying introduction, 68-69
displaying rest of story, 74-76
displaying story’s opening, 73-74
overview, 36-39, 66-67
prompting player for input, 70-71
providing player instructions, 69-70
command history, 42
command prompt, 17-24
commands, 20
executing cmdlets, 18-20
overview, 17
PowerShell workout, 20-24
starting sessions, 17-18
command shells, 390
Command.com, 7, 391
commands
break, 201-202
cmd.exe shell, 62
continue, 202-203
executing in command console, 55
running from command prompt, 20
Comma-Separated Value (CSV) files, 272-275,
391
comments, 67
common language runtime (CLR), 86
Compare-Object cmdlet, 91, 391
comparison operators, 170-171
comparisons, value, 160-161
Complete-PSTransaction cmdlet, 91, 391
Component Object Mode (COM), 391

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Component Object Model (COM) objects,
315-316
components, .NET Framework, 85
-computername parameter, 100, 314
condition parameter
for loop syntax, 193, 195
while loop syntax, 200
condition placeholder, 163
conditional logic, 117, 157-186
combining pipelines and operators, 162
comparing values, 160-161
Guess My Number game, 173-185
analyzing player input, 177-178
analyzing player’s response, 180
clearing screen, 180
collecting player input, 177
creating new script, 174
define and initialize game variables, 175
displaying game statistics, 178-179
displaying welcome screen, 175
final result, 181-185
generating random number, 176
overview, 158-160, 173-174
prompting player to play again, 179-180
setting up loop to collect and analyze
player guesses, 176
setting up loop to control gameplay,
175-176
if statements, 163-168
alternative courses of action, 165-166
formulating, 163-165
multiline, 165
nesting, 167-168
overview, 163
single line, 165
testing conditions, 166-167
overview, 157
switch statements, 168-170
Windows PowerShell operators, 170-173

comparison operators, 170-171
logical operators, 171-172
overview, 170
string comparison operators, 172-173
configuring
command console, 41-50
customization options, 42-46
overview, 41-42
scripting console configuration, 46-49
Windows command console editing
features, 49-50
output pane, 55-57
Windows PowerShell, 13-15
Windows Remote Management, 15-16
-CONFIRM option, 17
continue command, 202-203
Continue termination option, trap handler,
352
Control+Left edit feature, 49
Control+Right edit feature, 49
ConvertFrom-Csv cmdlet, 91, 391
ConvertFrom-SecureString cmdlet, 91, 391
ConvertFrom-StringData cmdlet, 91, 391
Convert-Path cmdlet, 91, 391
ConvertTo-Csv cmdlet, 91, 391
ConvertTo-Html cmdlet, 91, 270, 391
ConvertTo-SecureString cmdlet, 91, 391
ConvertTo-Xml cmdlet, 91, 391
copy command, 57
Copy-Item cmdlet, 91, 259, 391
Copy-ItemProperty cmdlet, 91, 391
Count property, array, 141
Create Shortcut wizard, 40
criteria specifications, 282
cursor size, 42
custom aliases, 111
customization
command console, 42-46
changing color attributes, 45-46

changing layout, 44-45
modifying font attributes, 43-44
modifying options, 42-43
overview, 42

of Windows PowerShell, 82-84

of working environment, 40-41

D

data
CSV files, 272-275
displaying with Out-GridView cmdlet,
276-282
displaying output, 277-278
grouping data, 279-280
overview, 276-277
searching and filtering data, 280-282
sorting data, 279
incoming, 229-231
returning, 229-231
saving output as HTML, 270
XML files, 271-272
data language, 12
data storage. See storing data
data types, argument, 225-226
Deal-Hand function, 334-335
debugging PowerShell scripts, 343-374
breakpoint cmdlets, 364
controlling statement execution, 364
creating error handlers, 351-358
creating trap handlers, 351-353
overview, 351
try, catch, and finally blocks, 353-358
debugging example, 365-367
error messages, 348-349
managing breakpoints, 367
PowerShell errors, 345-348
logical errors, 347-348
overview, 345
runtime errors, 346-347

Index

syntax errors, 345-346
PowerShell Game Console, 367-373
creating Get-Gamelisting function,
369-370
creating new script file, 368
creating Write-Menulist function, 370-371
defining and initializing script variables,
369
developing programming logic for Main
Processing section, 371-373
overview, 344-345, 367-368
writing End-ScriptExecution function,
371
reaction to errors, 349-351
terminating versus non-terminating errors,
348
tracing script execution, 358-363
displaying output status information,
359-360
overview, 358-359
tracking variable values, 359-360
using PowerShell’s debug mode,
360-363
default code blocks, 169-170
definition, variable, 134
desktop shortcuts, 40
dictionaries, 143
dir alias, 19
dir command, cmd.exe shell, 62
directory keyword, 263
Disable-PSBreakpoint cmdlet, 91, 364, 367, 391
Display-Board function, 286
Display-Results function, 289-290, 293
do until loops, 192-193
do until statements, 191, 391
do while loops, 191-192
do while statements, 391
double quotation marks, 134-135
down arrow edit feature, 49
downloading Windows PowerShell, 13

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

E Exception property, 348
edit enhancements, 50-53 exceptions, 392
Get-History cmdlet, 53 -exclude parameter, 260
overview, 50 executable files, 20
tab completion, 50-53 executing scripts, 57-58
Edit menu, Graphical Windows PowerShell, execution policy, 15
54 exit command, 203
edit options, 42 Export-Alias cmdlet, 91, 392
editing features, command console, 49-50 Export-Clixml cmdlet, 91, 271, 392
editing scripts, 57-58 Export-Console cmdlet, 92, 392
element parameter, foreach loop syntax, 196 Export-Csv cmdlet, 92, 272-274, 392
else statements, 163, 165-166 Export-ModuleMember cmdlet, 92, 392
elseif statements, 163, 166-167 expressions, 135-136, 392
Enable-PSBreakpoint cmdlet, 91, 364, 367, 392
end edit feature, 49 F
endless loops, 192, 347 File menu, Graphical Windows PowerShell, 54
End-ScriptExecution function, 371 files, 249-296
Env drive, 63-65 See also folders
-eq operator, 160-162 copying, 259-260
error handlers, 351-358 creating, 262-263
creating trap handlers, 351-353 deleting, 260-261
overview, 351 erasing contents from, 269
try, catch, and finally blocks, 353-358 moving, 259-260
error messages, 348-349 Out-GridView cmdlet's graphic window,
-ErrorAction argument, 349-350 276-282
ErrorDetails property, 348 displaying output, 277-278
ErrorRecord object, 348-349, 392 grouping data, 279-280
errors, modifying reaction to, 349-351. See searching and filtering data, 280-282
also PowerShell errors sorting data, 279
escape characters, 127-129 overview, 249
event logs, 306-309 PowerShell Tic-Tac-Toe game, 282
eventing, 12, 325-329, 392 clearing game board and prompting for
examining objects, 326-327 user permission, 290
instantiating new objects, 326 collecting player moves, 291
overview, 325-326 creating Check-Results function,
removing events, 329 288-289
subscribing to object events, 327-328 creating Display-Board function, 286
waiting for event to occur, 328-329 creating Display-Results function,

exception handler, 351 289-290

creating Get-Permission function,
284-286
creating loop to control individual
gameplay, 290-291
creating loop to control script
execution, 290
creating new script, 283
creating Validate-Move function,
286-288
defining and initializing script
variables, 283-284
determining if either player has won
game, 292-293
determining if tie has occurred,
293-294
final result, 296
overview, 250-252, 282
preparing Clear-Board function, 284
prompting players to play new game,
294-295
switching between player turns, 294
validating player moves, 291-292
reading data from Comma-Separated Value
file, 274-275
reading data from XML file, 272
reading from text files, 269
reformatting cmdlet output, 264-269
Format-List cmdlet, 264-266
Format-Table cmdlet, 266-269
regular expressions, 252-257
characters, 254
matching alternative patterns, 253
matching patterns based on ranges,
255-257
matching simple patterns, 252-253
overview, 252
quantifiers, 255
renaming, 261
retrieving information, 258-259

Index

saving data as XML file, 271
saving data in Comma-Separated Value
(CSV) file, 272-274
saving data output as HTML, 270
searching, 261-262
sending output to printer, 275-276
verifying existence, 257-258
writing to text files, 263-264
appending text, 264
overview, 263
writing text, 263-264

files, executable, 20
Filter button, Out-GridView cmdlet’s

graphical window, 281

filter keyword, 231

filters, 219-220, 231-232, 392
finally blocks, 353-358
flowcharts, 166, 392

folders, 257-261

copying, 259-260

creating, 262-263

deleting, 260-261

moving, 259-260

renaming, 261

retrieving information, 258-259
verifying existence, 257-258

font attributes, 43-44
font size, Graphical Windows PowerShell,

55-56

Font tab, PowerShell Properties dialog

window, 43-44

for loops, 193-196

for statements, 191, 392

-force parameter, 260, 263

foreach loops, 191, 196-200

ForEach statement, 392

Foreach-Object cmdlet, 92, 191, 232, 392
-ForegroundColor parameter, 332
ForegroundColor properties, 48

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

Format-Custom cmdlet, 92, 392
Format-List cmdlet, 92, 264-266, 312, 392
Format-Table cmdlet, 24, 92, 266-269, 392
Format-Wide cmdlet, 92, 393
Fortune Teller game. See PowerShell Fortune
Teller game
function breakpoints, 365
functions, 139, 215-245, 393
changing script design using filters and,
219-220
creating reusable code, 220
improving script organization, 219-220
overview, 219
overview, 215
PowerShell Hangman game, 232-243
challenging player to play another
game, 242-243
collecting and validating user input,
238-240
creating new script, 233
defining and initializing script-level
variables, 233-234
defining custom functions, 234-235
determining when game is over,
241-242
displaying results of each guess,
240-241
overview, 216-218, 232-233
prompting player to start game,
236-237
selecting secret word, 237-238
setting up loop to control gameplay, 237
setting up loop to process user guesses,
238
replacing with filters, 231-232
script organization, 220-231
function structure, 220-222
overview, 220
processing arguments, 222-227

processing incoming data, 227-228
restricting variable scope, 229-231
returning result, 228-229
Functions and Filters Section, script template,
222

G

Game Console. See PowerShell Game Console

Get-Acl cmdlet, 92, 393

Get-Alias cmdlet, 92, 109, 111, 393

Get-AuthenticodeSignature cmdlet, 92, 393

Get-Card function, 335

Get-ChildItem cmdlet, 19-20, 8688, 92,
106-107, 393

Get-Command cmdlet, 20, 92, 97, 393

Get-ComputerHand function, 335-336

Get-Content cmdlet, 92, 261-262, 269, 393

Get-Credential cmdlet, 92, 393

Get-Culture cmdlet, 92, 393

Get-Date cmdlet, 92, 393

Get-Event cmdlet, 92, 393

Get-EventLog cmdlet, 92, 306-309, 393

Get-ExecutionPolicy cmdlet, 92, 393

Get-FileNames function, 227-228

Get-Gamelisting function, 369-370

Get-Help cmdlet, 17, 92, 97-98, 393

Get-History cmdlet, 53, 92, 393

Get-Host cmdlet, 47-48, 92, 393

Get-Item cmdlet, 92, 258, 393

Get-ItemProperty cmdlet, 92, 317, 393

Get-Location cmdlet, 92, 393

Get-Member cmdlet, 87-88, 92, 325-327, 394

Get-Module cmdlet, 93, 394

Get-NewCard function, 339

Get-Permission function, 284-286, 331-332

Get-PfxCertificate cmdlet, 93, 394

Get-PlayerHand function, 337-339

Get-Process cmdlet, 21-23, 93, 300-301, 394

Get-PSBreakpoint cmdlet, 93, 364, 367, 394

Get-PSCallStack cmdlet, 93, 394
Get-PSDrive cmdlet, 93, 394
Get-PSEvent cmdlet, 93, 394
Get-PSEventSubscriber cmdlet, 93, 328, 394
Get-PSJob cmdlet, 93, 99, 101-103, 105-106,
394
Get-PSProvider cmdlet, 62-63, 93, 394
Get-PSSnapln cmdlet, 93, 394
Get-Random cmdlet, 93, 117, 394
Get-Runspace cmdlet, 93, 394
Get-Service cmdlet, 93, 100, 302, 394
Get-TraceSource cmdlet, 93, 394
Get-UICulture cmdlet, 93, 394
Get-Unique cmdlet, 93, 394
Get-Variable cmdlet, 93, 394
Get-WmiObject cmdlet, 93, 310-314, 394
global scope, 139, 394
graphical help files, 10, 60-61, 395
Graphical Windows PowerShell, 10, 54-61, 395
accessing Graphical Help files, 60-61
configuring output pane, 55-57
creating additional runspaces, 59-60
editing and executing scripts, 57-58
executing commands, 55
overview, 54
-groupby parameter, 268-269
-groupby property, Format-Table cmdlet, 24
Group-Object cmdlet, 93, 395
Guess My Number game, 173-185
analyzing player input, 177-178
analyzing player’s response, 180
clearing screen, 180
collecting player input, 177
creating new script, 174
define and initialize game variables, 175
displaying game statistics, 178-179
displaying welcome screen, 175
final result, 181-185
generating random number, 176

Index

overview, 158-160, 173-174

prompting player to play again, 179-180

setting up loop to collect and analyze player
guesses, 176

setting up loop to control gameplay,
175-176

H

hacking, 14

Hangman game. See PowerShell Hangman
game

hashes, 133, 143

HasMoreData field, 100, 103

height properties, 48

Help menu, Graphical Windows PowerShell,
54-55

hierarchical data stores, 62-66

history buffer, 50, 53

hives, 316

HKEY_CURRENT_USER registry keys, 65-66

HKEY_LOCAL_MACHINE registry key, 65

home edit feature, 49

HTML files, 270

identifiers, unique event, 329
if keyword, 126
if statements, 153, 163-168, 395
alternative courses of action, 165-166
formulating, 163-165
multiline, 165
nesting, 167-168
overview, 163
single line, 165
testing conditions, 166-167
Import-Alias cmdlet, 93, 395
Import-Clixml cmdlet, 93, 272, 395
Import-Csv cmdlet, 93, 274-275, 395
Import-LocalizedData cmdlet, 93, 395

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

-include parameter, 261 displaying game and author information,
incoming data, 227-228 31
initialization parameter, for loop syntax, displaying punch line, 29

193 final result, 31-33
Initialization Section, script template, 222 overview, 4-6, 26-27
input pane, Graphical Windows PowerShell, pausing between jokes, 29

55 prompting player to begin game, 28
-input parameter, 278 script, 378
inquiry options, ErrorAction, 351 telling second joke, 29-30
Insert mode, 42 telling third joke, 30
installing Windows PowerShell, 13-15
integrated development environment (IDE), L

Windows PowerShell, 380-381 language keywords, 10
IntelliSense, 58, 395 layout, command console, 44-45
internationalization, script, 12 Layout tab, PowerShell Properties dialog
interpolation, variable, 134-135 window, 44-45
Invoke-Command cmdlet, 93, 395 Length property, 108
Invoke-Expression cmdlet, 93, 321, 373, 395 length property, array, 141
Invoke-History cmdlet, 53, 93, 395 Jlist argument, 306
Invoke-Item cmdlet, 94, 395 local scope, 139, 395
Invoke-WmiMethod cmdlet, 94, 310 logic, if statement, 166
join operator, 132 logical errors, 345, 347-348, 395

logical operators, 171-172

J looping logic, 117
Join-Path cmdlet, 94, 395 loops, 187-214
-keep argument, 103 altering execution, 201-203
overview, 201

K using break command, 201-202
keys, registry, 65-66, 316-317 using continue command, 202-203
key-value pairs, 145 defined, 395
keywords do until loops, 192-193

directory, 263 do while loops, 191-192

filter, 231 endless, 347

language, 10 foreach loops, 196-200

param, 223, 225 for loops, 193-196

searches by, 280-281 overview, 187, 190-191
Knock Knock Joke game, 26-33 Rock, Paper, Scissors game

collecting additional player input, 28-29 analyzing results of gameplay, 210-212

creating new PowerShell script, 27-28 creating new script file, 205

defining and initializing script
variables, 205-206
displaying computer’s and player’s
moves, 209-210
displaying game statistics, 212-213
displaying game’s welcome screen, 206
final result, 213
generating computer’s move, 206-207
overview, 188-190, 203-204
prompting player to make move,
207-208
resetting variable values for new round
of play, 212
setting up loop to control gameplay, 206
translating player’s move, 209
validating player’s move, 208-209
while, 28, 71, 73, 117
while loops, 200-201
Is alias, 19-20

M

Main Processing Section, script template,
222

-match operator, 252, 262

matching patterns, 252-253, 255-257

Measure-Command cmdlet, 94, 395

Measure-Object cmdlet, 94, 395

menu bar, Graphical Windows PowerShell,
54-55

metacharacters, 254-255

methods, 8, 52, 86, 89-90, 396

Microsoft ScriptCener PowerShell page, 382

Microsoft.PowerShell_profile.ps1 profile file,
46-47

Microsoft’s Windows Management
Instrumentation (WMI), 401

modules, 12

Monad Technology Blog, 385-387

Move-Item cmdlet, 94, 259-260, 396

Index

Move-ItemProperty cmdlet, 94, 396
multiline if statements, 165

named cmdlets, 322-323
names
function, 221
naming syntax, 17
parameter, 224
variable, 133-134
negative numbers, 140
nesting if statements, 167-168
.NET classes, 315
.NET Framework, 13-14, 79-119, 389
NET class library, 85-86
accessing resources, 86-90
aliases, 109-111
background jobs, 98-106
creating, 100-101
deleting, 105-106
executing, 100-101
overview, 98-99
retrieving information about, 101-102
retrieving output, 102-103
stopping execution, 104-105
waiting for completion of, 103-104
CLR, 86
cmdlets, 90-98
Get-Help, 97-98
listed, 91-97
overview, 90
components, 85
integration with, 8-9
object pipelines, 106-108
overview, 79, 84-85
PowerShell customization techniques,
82-84
PowerShell Fortune Teller game, 111-119
controlling gameplay, 115-118

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

creating new PowerShell script, 112
declaring and initializing variables,

112-113
designing game, 111-112
displaying closing screen, 118-119

displaying game instructions, 114-115
displaying welcome screen, 113-114

overview, 80-82, 111
networking data retrieval, 312-313
New Runspace command, 59
New-Alias cmdlet, 94, 396
-newest parameter, 308
New-Item cmdlet, 94, 263, 396
New-ItemProperty cmdlet, 94, 396
New-Object cmdlet, 94, 315, 325-326, 396
New-PSDrive cmdlet, 94, 396
New-PSEvent cmdlet, 94, 396
New-Runspace cmdlet, 94, 101, 321, 396
New-Service cmdlet, 94, 396
New-TimeSpan cmdlet, 94, 396
New-Variable cmdlet, 94, 396
No option, -Step parameter, 361
No to All option, -Step parameter, 361
non-terminating errors, 348, 396
-not operator, 171
-notmatch operator, 252
nouns, 17
Number Guessing Game script, 378
numeric data, 357

o
object pipelines, 106-108
object piping, 9, 17, 106-108
object references, 258-259, 318
object-based scripting language, 9
objects, 8, 85, 396. See also eventing
online resources, 382-387
overview, 382
PowerShell blogs, 385-387

Wikipedia’s Windows PowerShell page,
383-384
Windows PowerShell News Group, 385
operators
-unary, 135
*,130, 136
+,129, 136, 141-142, 144
+=,129
> redirection, 262
>> pipe, 263
arithmetic, 135, 161
-cmatch, 251-252
-cnotmatch, 252
combining with pipelines, 162
comparison, 170-171
-eq, 160-162
join, 132
logical, 171-172
-match, 251, 262
-notmatch, 252
overview, 11
range, 140, 142
replace, 130-131
-split, 131-132
string comparison, 172-173
Windows PowerShell. See Windows
PowerShell, operators
options, cmdlet, 17
Options tab, PowerShell Properties dialog
window, 42-43
-or operator, 172
Out-Default cmdlet, 94, 396
Out-File cmdlet, 94, 264, 396
Out-GridView cmdlet, 10-11, 94, 276-282, 396
displaying output, 277-278
grouping data, 279-280
overview, 276-277
searching and filtering data, 280-282
sorting data, 279

Out-Host cmdlet, 94, 396
Out-Null cmdlet, 94, 396
Out-Printer cmdlet, 94, 275-276, 396
output
background jobs, 102-103
displaying in Out-GridView window,
277-278
displaying status information, 359-360
reformatting, 264-269
Format-List cmdlet, 264-266
Format-Table cmdlet, 266-269
sending to printers, 275-276
output pane, configuring, 55-57
Out-String cmdlet, 94, 396

P

page down edit feature, 49
page up edit feature, 49
param keyword, 223, 225
parameters
-action, 328
-BackgroudColor, 332
-computername, 314
-exclude, 260
-force, 260, 263
foreach loops, 196
-ForegroundColor, 332
function, 171
-groupby, 268-269
-include, 261
-input, 278
for loops, 193-195
-newest, 308
-ProcessName, 22
-property, 264, 266
-recurse, 259-260
-runspace parameter, 322
-Step, 360, 363
-Trace, 360

Index

-whatif, 261
parentheses, 136, 171, 252
pattern matching, 23, 252-253, 255-257
period (.) character, 254
persistent runspaces, 99, 101, 321-322
pipelines, 106-108, 162, 324-325, 397
pipes, 9, 17, 106-108, 227
Play-Game function, 334
Pop-Location cmdlet, 94, 397
Pop-Runspace cmdlet, 94, 397
populating associative arrays, 144
Popup Background option, Colors tab,
PowerShell Properties dialog window, 45
Popup Text option, Colors tab, PowerShell
Properties dialog window, 45
PowerShell 1.0, uninstalling, 12-13
PowerShell Analyzer, 381
PowerShell assignment operators, 137
PowerShell Blackjack game, 298-300, 329-340
adding controlling logic to main processing
section, 339-340
creating Analyze-Results function, 336-337
creating Check-Registry function, 333-334
creating Deal-Hand function, 334-335
creating Get-Card function, 335
creating Get-ComputerHand function,
335-336
creating Get-NewCard function, 339
creating Get-Permission function, 331-332
creating Get-PlayerHand function, 337-339
creating new script file, 330
creating Play-Game function, 334
defining and creating new variables, 331
script, 378
PowerShell blogs, 385-387
PowerShell errors, 345-348
logical errors, 347-348
overview, 345
runtime errors, 346-347

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

syntax errors, 345-346
PowerShell Fortune Teller game, 111-119
controlling gameplay, 115-118
creating new PowerShell script, 112
declaring and initializing variables,
112-113
designing game, 111-112
displaying closing screen, 118-119
displaying game instructions, 114-115
displaying welcome screen, 113-114
overview, 80-82, 111
script, 378
PowerShell Game Console, 367-373
creating Get-Gamelisting function,
369-370
creating new script file, 368
creating Write-Menulist function, 370-371
defining and initializing script variables,
369
developing programming logic for Main
Processing section, 371-373
overview, 344-345, 367-368
script, 378
writing End-ScriptExecution function, 371
PowerShell Guy blog, 387
PowerShell Hangman game, 232-243
challenging player to play another game,
242-243
collecting and validating user input, 238-
240
creating new script, 233
defining and initializing script-level
variables, 233-234
defining custom functions, 234-235
determining when game is over, 241-242
displaying results of each guess, 240-241
overview, 216-218, 232-233
prompting player to start game, 236-237
script, 378

selecting secret word, 237-238
setting up loop to control gameplay, 237
setting up loop to process user guesses, 238
PowerShell Information Centre, 383-384
PowerShell Properties dialog window, 42-46
PowerShell Quick Start guide, 383-384
PowerShell Tic-Tac-Toe game, 282
clearing game board and prompting for
user permission, 290
collecting player moves, 291
creating Check-Results function, 288-289
creating Display-Board function, 286
creating Display-Results function, 289-290
creating Get-Permission function, 284-286
creating loop to control individual
gameplay, 290-291
creating loop to control script execution,
290
creating new script, 283
creating Validate-Move function, 286-288
defining and initializing script variables,
283-284
determining if either player has won game,
292-293
determining if tie has occurred, 293-294
final result, 296
overview, 250-252, 282
preparing Clear-Board function, 284
prompting players to play new game,
294-295
script, 378
switching between player turns, 294
validating player moves, 291-292
PowerShellPlus, 380
precedence, 135-136, 397
printers, sending output to, 275-276
private scope, 139, 230, 397
processes
listing, 300-301

stopping, 300-301

-ProcessName parameter, Get-Process
cmdlet, 22

profile paths, 46-47
profile.ps1 file, 82-83
properties, 8, 86-87, 397
-property parameter, 264, 266
provider, 397
.ps1 file extension, 16, 27, 389
pseudocode, 164, 397
Push-Location cmdlet, 94, 397
Push-Runspace cmdlet, 94, 397

Q

quantifiers, 255
QuickEdit mode, 42
quotation marks, 134-135

R

Random objects, 315
range operator, 140, 142
ranges, patterns based on, 255-257
RawUI property, 47-48
Read-Host cmdlet, 18, 69-70, 94, 359-360, 397
Receive-PSJob cmdlet, 94, 99, 102-103, 397
-recurse parameter, 259-260
references, object, 258-259, 318
Regedit utility, 318
Register-ObjectEvent cmdlet, 94, 327-328, 397
Register-PSEvent cmdlet, 94, 397
Register-WMIEvent cmdlet, 94, 310, 326, 397
registry keys, 65-66, 397
registry, Windows, 316-320, 397
regular expressions, 252-257, 397

characters, 254

matching alternative patterns, 253

matching patterns based on

ranges, 255-257
matching simple patterns, 252-253

Index

overview, 252
quantifiers, 255
remote command execution, 320-322
remote execution, 12, 98, 100, 397
remotesigned security level, 15
Remove method, 145
Remove-Item cmdlet, 95, 260-261, 397
Remove-ItemProperty cmdlet, 95, 398
Remove-Module cmdlet, 95, 398
Remove-PSBreakpoint cmdlet, 95, 364,
367, 398
Remove-PSDrive cmdlet, 95, 398
Remove-PSEvent cmdlet, 95, 398
Remove-PSJob cmdlet, 95, 99, 105-106, 398
Remove-PSSnapln cmdlet, 95, 398
Remove-Runspace cmdlet, 95, 322, 398
Remove-Variable cmdlet, 95, 398
Remove-WMIObject cmdlet, 95, 310, 398
Rename-Item cmdlet, 95, 261, 398
Rename-ItemProperty cmdlet, 95, 398
replace operator, 130-131
reserved words, 126-127, 398
Resolve-Path cmdlet, 95, 398
resources, .NET Framework, 86-90
Restart-Service cmdlet, 95, 302, 398
Resume-Service cmdlet, 95, 302, 398
Retrieve-PSJob cmdlet, 103
Return[Value] termination option, trap
handler, 352
returning data, 228-229
reusable code, 220
Rock, Paper, Scissors script, 378
Run button, Scripts pane, Graphical Windows
PowerShell, 58
Runspace menu, Graphical Windows
PowerShell, 54
-runspace parameter, 322
runspaces, 12, 99, 398
creating additional, 59-60

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

persistent, 101
runspaces, persistant remote, 321-322
runtime errors, 345-347, 398

S

Save Script command, 58
scopes, 138-139, 229-231, 352
Screen Background option, Colors tab,
PowerShell Properties dialog window, 45
Screen Buffer Size section, Layout tab,
PowerShell Properties dialog window, 45
Screen Text option, Colors tab, PowerShell
Properties dialog window, 45
script cmdlets, 12, 398
Script Editor IDE, PowerShellPlus’s, 380
script files, website, 378
script internationalization, 12
script scope, 139, 398
script template, Windows PowerShell,
221-222
ScriptCener PowerShell page, Microsoft, 382
script-level variables, 229-230
scripts
changing design with functions and filters,
219-220
creating reusable code, 220
improving script organization, 219-220
overview, 219
console configuration, 46-49
editing and executing, 57-58
organization, 220-231
function structure, 220-222
overview, 220
processing arguments, 222-227
processing incoming data, 227-228
restricting variable scope, 229-231
returning result, 228-229
tracing execution of, 358-363
displaying output status information,
359-360

overview, 358-359
tracking variable values, 359-360
using PowerShell’s debug mode,
360-363
Windows PowerShell, 25-26
Scripts pane, Graphical Windows PowerShell,
57-58
Search in Results field, Out-GridView cmdlet’s
graphical window, 280-281
searches, Windows PowerShell Graphical
Help, 60-61
security, 14-15
Seinfeld Trivia Quiz
designing game, 145-155
analyzing player answers, 153
assigning ranking, 153-155
creating new script, 146-147
defining and initializing variables, 147
displaying first quiz question, 148-149
displaying instructions, 148
displaying remaining quiz questions,
150-152
displaying welcome screen, 147-148
finishing quiz, 155
let player know quiz is complete, 152
final result, 156
overview, 124-126
script, 378
Selected Color values section, Colors tab,
PowerShell Properties dialog window, 46
Selected Font : Terminal section, Font tab,
PowerShell Properties dialog window, 44
Select-Object cmdlet, 88-89, 95, 399
Select-String cmdlet, 95, 261-262, 399
session states, 105
Sessionld attribute, 100
Sessionld numbers, 101
sessions, starting, 17-18
Set-ACL cmdlet, 95, 399
Set-Alias cmdlet, 95, 111, 399

Set-AuthenticodeSignature cmdlet, 95, 399
Set-Content cmdlet, 95, 263-264, 399
Set-Date cmdlet, 95, 399
Set-ExecutionPolicy cmdlet, 95, 399
Set-Executionpolicy command, 15
Set-Item cmdlet, 95, 399
Set-ItemProperty cmdlet, 95, 399
Set-Location cmdlet, 63-64, 95, 219, 227, 399
Set-PSBreakpoint cmdlet, 95, 364, 399
Set-PSDebug cmdlet, 96, 360-363, 399
Set-Service cmdlet, 96, 302, 399
Set-StrictMode cmdlet, 96, 399
Set-TraceSource cmdlet, 96, 399
Set-Variable cmdlet, 96, 399
Set-Wmilnstance cmdlet, 96, 310, 399
short-circuiting, 172
shortcuts

character class, 256

desktop, 40

Windows PowerShell, 40-41
Show in Groups option, Out-GridView cmdlet

window, 279-280
simple patterns, matching, 252-253
single line if statements, 165
single quotation marks, 134-135
Sort-Object cmdlet, 96, 107, 399
sound, 293
special variables, 11, 108, 138, 400. See also
variables

-split operator, 131-132
Split-Path cmdlet, 96, 400
spooler service, 301-302, 305-306
Start-PSDebug cmdlet, 96, 400
Start-PSJob cmdlet, 96, 99-101, 400
Start-PSTransaction cmdlet, 96, 400
Start-Service cmdlet, 96, 302, 400
Start-Sleep cmdlet, 29, 96, 104, 400
Start-Transcript cmdlet, 96, 400
state field, 100

Index

statement execution, 364

-Step parameter, 360, 363

step parameter, for loop syntax, 193, 196

Step-Into command, 364

Step-Out command, 364

Step-Over command, 364

Stop-Process cmdlet, 96, 301, 400

Stop-PSJob cmdlet, 96, 99, 104-105, 400

Stop-Service cmdlet, 96, 302, 400

Stop-Transcript cmdlet, 96, 400

storing data. See arrays; associative arrays;

hashes; variables

Story of Three Amigos game, 66
collecting additional inputs, 71-73
creating new script, 67-68
declaring script variables, 68
displaying introduction, 68-69
displaying rest of story, 74-76
displaying story’s opening, 73-74
overview, 36-39, 66-67
prompting player for input, 70-71
providing player instructions, 69-70
script, 378

string comparison operators, 172-173

string manipulation, 129-132
concatenation, 129-130
joining strings, 131-132
overview, 129
repeating character strings, 130
replacing parts of string, 130-131
splitting strings, 131-132

strings, 28

subclasses, 400

Suspend option, -Step parameter, 361

Suspend-Service cmdlet, 96, 302, 400

switch statements, 163, 168-170, 400

syntax errors, 345-346

syntax, naming, 17

system administration, 297-341

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

.NET classes, 315
accessing event logs, 306-309
administering Windows services, 301-306
Component Object Model (COM) objects,
315-316
creating script cmdlets, 322-325
creating custom cmdlet, 323-324
loading and executing cmdlets, 324
overview, 322-323
working with pipeline data, 324-325
eventing, 325-329
examining objects, 326—-327
instantiating new objects, 326
overview, 325-326
removing events, 329
subscribing to object events, 327-328
waiting for event to occur, 328-329
listing and stopping processes, 300-301
overview, 297, 300
PowerShell Blackjack game, 298-300,
329-340
adding controlling logic to main
processing section, 339-340
creating Analyze-Results function,
336-337
creating Check-Registry function,
333-334
creating Deal-Hand function, 334-335
creating Get-Card function, 335
creating Get-ComputerHand function,
335-336
creating Get-NewCard function, 339
creating Get-Permission function,
331-332
creating Get-PlayerHand function,
337-339
creating new script file, 330
creating Play-Game function, 334
defining and creating new variables,
331

remote command execution, 320-322
Windows Management Instrumentation,
310-314
overview, 310
pulling WMI data from remote
computers, 314
retrieving application data, 313
retrieving BIOS information, 310-311
retrieving networking data, 312-313
retrieving system information, 311-312
Windows registry, 316-320
system information retrieval, 311-312
System Properties dialog, Windows Vista, 26
System.DivideByZeroException exception,
357-358

T

tab completion, 50-53, 58, 400
tabs, runspaces, 59-60
TargetObject property, 348
Tee-Object cmdlet, 96, 400
templates, script, 221-222
temporary runspaces, 99
terminating errors, 348, 400
termination options, trap handler, 352
testing conditions, 166-167
testing, script, 346
Test-Path cmdlet, 96, 257-258, 400
tests, 169
text files, 263-264

See also files

appending text, 264

overview, 263

reading from, 269

writing text, 263-264
Tic-Tac-Toe game. See PowerShell Tic-Tac-Toe

game

ToLower() method, 52
-Trace parameter, 360
Trace-Command cmdlet, 96, 401

traces, 401

transactions, 12, 401

trap handlers, 351-353

trusting scripts, 14

try blocks, 353-358
Try-Finally-Catch structure, 12, 401

8]

UI property, 47-48
Undo-PSTransaction cmdlet, 97, 401
uninstalling PowerShell 1.0, 12-13
unique event identifier, 329
unnamed cmdlets, 322
Unregister-PSEvent cmdlet, 96, 401
unresricted security level, 15

up arrow edit feature, 49
Update-FormatData cmdlet, 96, 401
Update-List cmdlet, 97, 401
Update-TypeData cmdlet, 96, 401
Use-PSTransaction cmdlet, 97, 401
utility programs, 6

\"
Validate-Move function, 286-288
values, 169, 316, 401
variable breakpoints, 365
variables, 133-139
$_, 108, 231-232, 389
$args, 224-225
$error, 349
$ErrorActionPreference, 349-351
$input, 227
$My]Job, 103
$PSConsoleWindow, 48
$result, 229
$RunSP, 101
$status, 117-118
$time, 117
$userReply, 28
$x, 310

Index

assigning values using expressions, 135
defined, 401
defining, 134
initializing, 134
naming, 133-134
overview, 133
PowerShell assignment operators, 137
precedence, 135-136
scopes, 138-139, 229-231
script-level, 229-230
special, 11
special variables, 138
tracking values, 359-360
variable interpolation, 134-135
in Write-Host cmdlets, 76
Verb-Noun names, 322-323
verbs, 17
View menu, Graphical Windows
PowerShell, 54

w

Wait-Process cmdlet, 96, 401
Wait-PSEvent cmdlet, 96, 329, 401
Wait-PSJob cmdlet, 96, 99, 103-104, 401
website, 377-378
-WHATIF option, 17
-whatif parameter, 261
Where-Object cmdlet, 97, 108, 227, 232, 401
while loops, 28, 71, 73, 117, 191, 200-201
while statements, 401
width properties, 48
Wikipedia’s Windows PowerShell page,
383-384
wild card characters, 23-24
Windows command console, 18
Windows Management Instrumentation
(WMI), 310-314
overview, 310
pulling data from remote computers, 314
retrieving application data, 313

Microsoft Windows PowerShell 2.0 Programming for the Absolute Beginner, Second Edition

retrieving BIOS information, 310-311
retrieving networking data, 312-313
retrieving system information, 311-312
Windows Management Instrumentation
(WMI), Microsoft’s, 401
Windows Position section, Layout tab,
PowerShell Properties dialog window, 45
Windows PowerShell, 3-34
See also Windows PowerShell language
versus cmd.exe, 9-10
configuring, 13-15
configuring Windows Remote
Management (WinRM), 15-16
development team’s blog, 385-386
history of, 7
installing, 13-15
integration with .NET, 8-9
interacting with command prompt, 17-24
executing cmdlets, 18-20
other types of commands, 20
overview, 17
PowerShell workout, 20-24
starting sessions, 17-18
Knock Knock Joke game, 26-33
collecting additional player input, 28-29
creating new PowerShell script, 27-28
displaying game and author
information, 31
displaying punch line, 29
final result, 31-33
overview, 4-6, 26-27
pausing between jokes, 29
prompting player to begin game, 28
telling second joke, 29-30
telling third joke, 30
new features of, 10-12
operators, 170-173
comparison operators, 170-171
logical operators, 171-172

overview, 170
string comparison operators, 172-173
overview, 3-4, 6-7
scripting, 25
simplifying script execution, 25-26
uninstalling PowerShell 1.0, 12-13
Windows PowerShell integrated development
environment (IDE), 380-381
Windows PowerShell language, 126-132
escape characters, 127-129
string manipulation, 129-132
concatenation, 129-130
overview, 129
repeating character strings, 130
replacing parts of string, 130-131
splitting and joining strings, 131-132
Windows PowerShell reserved words,
126-127
Windows PowerShell News Group, 385
Windows registry, 316-320, 397
Windows Remote Management (WinRM),
15-16, 98, 401
Windows Script Host (WSH), 7
Windows Server 2003, 13
Windows Server 2008, 13
Windows services administration, 301-306
Windows Size section, Layout tab, PowerShell
Properties dialog window, 45
Windows Vista, 13
Windows XP, 13
WindowsSize property, 48
WindowTitle property, 48
Write-Debug cmdlet, 97, 402
Write-Error cmdlet, 97, 402
Write-Host cmdlet
defined, 402
displaying output status information,
359-360
overview, 97

parameters of, 332

text string control, 127-128

tracking variable values, 359-360

variables in, 76
Write-Menulist function, 370-371
Write-Output cmdlet, 29, 97, 402
Write-Progress cmdlet, 97, 402
Write-Verbose cmdlet, 97, 402
Write-Warning cmdlet, 97, 402
WS-Management protocol, 15-16, 402

Index

X
XML, 271-272, 402

Y

Yes option, -Step parameter, 361
Yes to All option, -Step parameter, 361

z

zero denominator, 357-358

	TABLE OF CONTENTS
	Part I: WINDOWS POWERSHELL BASICS
	Chapter 1 INTRODUCING WINDOWS POWERSHELL
	Project Preview: The Knock Knock Joke Game
	Getting to Know Windows PowerShell
	What's New in Windows PowerShell 2.0?
	Uninstalling PowerShell 1.0
	Installing and Configuring Windows PowerShell
	Configuring Windows Remote Management
	Interacting with the PowerShell Command Prompt
	Windows PowerShell Scripting
	Simplifying PowerShell Script Execution
	Back to the Knock Knock Joke Game
	Summary

	Chapter 2 INTERACTING WITH THE WINDOWS POWERSHELL COMMAND LINE AND GRAPHICAL ENVIRONMENT
	Project Preview: The Story of the Three Amigos
	Accessing Windows PowerShell
	Customizing the Windows PowerShell Working Environment
	Configuring the Windows Command Console
	Windows PowerShell Edit Enhancements
	Working with Graphical Windows PowerShell
	Navigating Hierarchical Data Stores
	Back to The Story of the Three Amigos
	Summary

	Chapter 3 OBJECT-BASED SCRIPTING WITH .NET
	Project Preview: The PowerShell Fortune Teller Game
	Additional PowerShell Customization Techniques
	The Microsoft .NET Framework
	Executing Cmdlets
	Executing Background Jobs
	Windows PowerShell Plumbing
	Working with Aliases
	Back to the PowerShell Fortune Teller Game
	Summary

	Part II: LEARNING HOW TO WRITE POWERSHELL SCRIPTS
	Chapter 4 WORKING WITH VARIABLES, ARRAYS, AND HASHES
	Project Preview: The Seinfeld Trivia Quiz
	Windows PowerShell Language Features
	Storing and Retrieving Data
	Back to the Seinfeld Trivia Quiz
	Summary

	Chapter 5 IMPLEMENTING CONDITIONAL LOGIC
	Project Preview: The Guess My Number Game
	Comparing Values
	Combining Pipelines and Operators
	Implementing Conditional Logic
	Windows PowerShell Operators
	Back to the Guess My Number Game
	Summary

	Chapter 6 USING LOOPS TO PROCESS DATA
	Project Preview: The Rock, Paper, Scissors Game
	Working with Loops
	Altering Loop Execution
	Back to the Rock, Paper, Scissors Game
	Summary

	Chapter 7 ORGANIZING SCRIPTS USING FUNCTIONS
	Project Preview: The PowerShell Hangman Game
	Changing Script Design Using Functions and Filters
	Enhancing Script Organization with Functions
	Replacing Functions with Filters
	Back to the PowerShell Hangman Game
	Summary

	Part III: ADVANCED TOPICS
	Chapter 8 WORKING WITH FILES AND FOLDERS
	Project Preview: The PowerShell Tic-Tac-Toe Game
	Using the Power of Regular Expressions
	Administering Files and Folders
	Reading from and Writing to Files
	Sending Output to the Printer
	Displaying Data in a Graphic Window Using the Out-GridView Cmdlet
	Back to the PowerShell Tic-Tac-Toe Game
	Summary

	Chapter 9 BASIC SYSTEM ADMINISTRATION
	Project Preview: The PowerShell Blackjack Game
	Accessing and Administering System Resources
	Programmatically Interacting with the Windows Registry
	Remoting
	Creating Your Own Script Cmdlets
	Eventing
	Back to PowerShell Blackjack Game
	Summary

	Chapter 10 DEBUGGING POWERSHELL SCRIPTS
	Project Preview: The PowerShell Game Console
	Understanding PowerShell Errors
	Terminating Versus Non-Terminating Errors
	Dissecting the Structure of Error Messages
	Telling Windows PowerShell How to React to Errors
	Creating Error Handlers
	Tracing Script Execution
	Debugging PowerShell 2.0 Scripts
	Back to the PowerShell Game Console
	Summary

	Part IV: APPENDICES
	Appendix A: WHAT'S ON THE COMPANION WEBSITE?
	Appendix B: WHAT NEXT?
	Windows PowerShell IDEs
	Recommended Reading
	Locating Microsoft PowerShell Resources Online

	GLOSSARY
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

